
7 AD-A124 010 THE DISCUS HARDWARE SYSTEM(U) ROYAL SIGNALS AND RADAR 1/ I
ESTABLISHMIENT MALVERN (ENGLAND) H S FIELD-RICHARDS

U JNLA UL 82 RSRE-82010 DRC BR B 0

NCAEhhE/h hEE2hEI

EEIEEEEmons

1111IL2 a4

MICOCPY ESLUTO TES CAR
NTOABU EO TNAM16-

11111 ~ MAO *2

ROYAL 31I0ALS AID RADAR KSTABLIS3RNNT

REPORT 82010

Title: THE DISCUS HARDWARE SYSTEM

Author: H.S. Field-Richards

Date: July 1982

UMKAIRY

This report describes the hardware philosophy behind the
Distributed Control microprocessor System (DISCUS) developed at
RSRE. DISCUS is an array of up to 15 asynchronous microprocessors
that are star connected around a global store. The system is
compared to other architectures, and the general philosophy behind
the design of DISCUS. This is to keep the hardware and software as
simple as possible while achieving the aims of system recovery and
diagnostics. Enhancements for the future such as the choice of
microprocessor and bus are discussed as well as the present and
possible future recovery aids.

Copyright
C

. Controller HMSO London

S982

w TT)

"That every boy and every gal,
That's born into the world alive,

Is either a little Liberal,
Or else a little Conservative."

Iolanthe (Act II Scene 1) W.S. Gilbert

(The relevance of this rather obscure quote can be
found in the report on the operating system -
reference t8J)

.

CONTNTS

CONTENTS iv
LIST OF ILLUSTRATIONS vi

1. INTRODUCTION 1,1

2. MULTI-PROCESSING AND DISCUS 2.1
2.1 The Functional Approach 2.1
2.2 The DISCUS Approach 2.3
2.3 Multi-processing Systems 2.3
2.4 Types of Processor Interconnection 2.5

2.4.1 Dedicated Bus 2.5
2.4.2 Multiport System 2.6
2.4.3 Single Time Shared Bus 2.7
2.4.4 Multiple Time Shared Bus 2.8
2.4.5 Crossbar Connected System 2.9
2.4.6 Star Connected System 2.10

2.4.7 Ring Connected System 2.10
2.5 The DISCUS Architecture 2.11

2.5.1 Separate/Common Channels 2.15
2.5.2 Separate/Common Global Store 2.16

2.5.3 Store Partitioning 2.16

3. THE DISCUS HARDWARE 3.1
3.1 Local Pr,.cessor Design 3.1
3.2 Multi-processor Arrangement 3.3
3.3 Global Store Crate 3.7
3.4 DISCUS Addressing Scheme 3.7
3.5 System Loading 3.9

4. RECOVERY IN DISCUS 4.1
4.1 Fault Definition 4.1
4.2 The Design Process 4.2

4.3 Fault Detection 4.3
4.4 Memory and I/O Accessing 4.5
4.5 Bus Fault Detection 4.9
4.6 Fault Diagnosis 4.10
4.7 Present Recovery in DISCUS 4.11
4.8 DISCUS Mark 1.5 4.13

4.8.1 8085 Processor Card 4.14

4.8.2 Bus Supervisor Card 4.15

4.9 Moral 4.16

Accession lor
NTIS GRAAI

DTIC TAB

Unannounced
Justiftcat .

070 By.~.-

Distrlb' t.on/
copy

F"PtrECtE Availability Codes

Avail an-/or
Di~t Special

7Iy)no

5. MICROPROCESSORS FOR DISCUS 5.1
5.1 Hardware Considerations 5.1

5.1.1 Command Acknowledge 5.2
5.1.2 Suspend Operation Facility 5.2
5.1.3 Indivisible Store Commands 5.3
5.1.4 Other Criterea 5.5

5.2 Which Microprocessor? 5.6
5.2.1 Intel 8086 5.6
5.2.2 Texas 9900 5.7
5.2.3 National Semiconductor 16000 5.7
5.2.4 Ferranti F100 5.7
5.2.5 Motorola 68000 5.7
5.2.6 Zilog Z8000 5.12

5.3 Which to choose? 5.15

6. BUSSES FOR DISCUS 6.1
6.1 Towards a New DISCUS Bus 6.2

6.1.1 Synchronous versus Asynchronous 6.3
6.1.2 Address Lines 6.4
6.1.3 Input/Output 6.4
6.1.4 Data Lines 6.5
6.1.5 Byte/word Addressing 6.5
6.1.6 Data Storage 6.5
6.1.7 Multiplexed or Non-multiplexed 6.7
6.1.8 Multi-master working 6.7

6.1.8.1 Ensuring Single Master 6.8
6.1.8.2 Priority Schemes 6.9

6.1.9 Control Lines 6.12
6.2 Mechanical Considerations 6.14

7. CONCLUSIONS 7.1
7.1 Ease of Development 7.1
7.2 Error Containment 7.2
7.3 Function Duplication 7.2
7.4 Function Splitting 7.2

7.5 Disadvantages of DISCUS 7.4
7.6 Success (or otherwise) of the Present System 7.4
7.7 The Future 7.5

REFERENCES REF.1
GLOSSARY OF TERMS AND SYMBOLS REF.3
ACKNOWLEDGMENTS AND NOTES ON REPORT REF.5

CT)

LLST OF ILLUSTRATIOS eto

Figures

1. Dedicated Bus System 2.5
2. Full Multiport System 2.6
3- Multiport System with Local Store 2.T
4. Single Time Shared Bus 2.8
5. Multiple Time Shared Bus 2.9
6. Crossbar Connected System 2.p
7. Star Connected System 2.10
8. Ring Connected System 2.11
9. The Functional Approach 2.13
10. DISCUS Message Passing 2.14
11. DISCUS Shared Store 2.14
12. Physical Connections 2.18
13. Local DISCUS Processor 3.2
14. DISCUS Local Processor Crate 3.4
15. DISCUS Global Store 3.7
16. Shared Store Contention 5.3

Plates

I. Local Crate with Three Processors 3.5
II. A Complete DISCUS Computer 3.6

Tables

2.1 Summary of Multi-processor Types 2.12

=2tV

1. INTRODUCTIOE

In the past 40 years, there has been a continued improvement in the quality
and size of the basic building blocks that are used to make computers. In the
early days these basic building blocks available to the designer were the
normal components of the day: resistors, capacitors and valves. The modules
they were used to make, such as bistables, could be several cubic inches in
size. Over the years the components continued to be reduced in size with the
advent of the transistor and then that of small scale integration. The basic
building blocks became complete sub-assemblies that consumed very little power
and space in relation to their ancestors. The resut was an increase in
reliability by several orders of magnitude, and the :proliferation of the
computer became more widespread. It is during the last decade that there has
been the most dramatic change in the systems within the computer. Large scale
integration, with the ability to produce such devices as the 64 kbit memory
and the microprocessor, will be the key area in the future development of all
levels of computing science. With the cost of these components being
relatively trivial, it is possible to reconsider the way in which we make
computers. The modern building blocks have become the complete sections of the
computer: CPU, store etc. In some cases these blocks can be a complete
processor so that the designer can use the computer as an available design
component in its own right.

It was how a recoverable computer might best be designed without the restraint
of the hardware expense that prompted the present research. We felt that the
advantages from an array of processors carrying out what a single processor
normally does would be considerable. In particular we wished to explore areas
that this general concept would give us -

1. Improve the containment of errors.

2. Reduce the software complexity if possible.

3. Make redundant hardware.

Not all these aims were achieved, or even attempted, and some other advantages
were accrued as the work progressed.

The final machine is an array of asynchronous microprocessors that we have
applied to a particular real-time application (in our case a small telephone
exchange). There can be up to 15 (local) processors that can be used in a
star configuration around a central (global) store. It is designed around a
bus that allows a variety of microprocessors to be utilised in the array.
Since the peripheral cards (memory, I/0 etc) are communicating to this bus
rather than a particular microprocessor, these cards should be constant for a
whole range of microprocessors.

The general philosophy behind the design of DISCUS has been to keep the
hardware and software as simple as possible while achieving the aims of system
recovery and diagnostics. This was achieved by the maximum use of
"intelligent" peripheral cards, that allows partitioning of the software into
functional blocks.

DISCUS has no form of hardware synchronisation between the processors. The
only synchronisation is at an operating system level. ;ach processor is able
to make a claim for the global store at any time, independently of any other
processor and totally unsynchronised with them. Also, all the activity on
each local DISCUS bus is carried asynchronously. This includes the direct
memory accessing of the intelligent peripheral cards to the local DISCUS
store. Dynamic store is asynchronously refreshed in both the local and global
stores. Within a full DISCUS multiprocessor there are at least three or four

" ' 1.1

levels of asynchronous working. I have developed a circuit which I believe
makes negligible the problems of asynchronous working in DISCUS. I do not
claim that the problem of the "meta-stable" latch, [9][10][15], has been
cured, but that the probability of it happening has been reduced to an
insignificant level.

A further innovation has been to assign one processor for every application's
function. This means that the scheduler in the operating system can be

dispensed with, and that there is no form of dynamic reallocation of the
processors during the running life of the DISCUS. Each function is assigned
when the applications program is designed. The hardware can be loaded with any
function since the communications between the processors is assigned in the
software. There is no overall control processor except when the system is
initially loaded; when the applications programs start running they do so
autonomously. It is possible to load the same function onto two or more
processors and have them share the work. This helps to relieve potential

bottlenecks in the system without the need for reworking the functional split
of the applications program.

Great emphasis is placed on how the system protects itself from deliberate or
accidental corruption of system data by the user. Address overlays between

the local and global store are used as well as numerous checks on data in the
system in both hardware and software.

Section 2 of this report gives an introduction to multiprocessing in general
and why we should want to take the DISCUS approach. Section 3 describes the
present hardware system, with section 4 discussing our preliminary approaches
to recovery within DISCUS, particularly with the hardware in mind. Sections 5
and 6 look at the microprocessors and busses respectively that might be used
in a DISCUS like machine in future. Section 7 sums up what has been done with
a brief re-cap of what should be done in future. Bear in mind that this report
should be read with "The DISCUS Hardware Description and Appendices" memo[29], and "The DISCUS Operating System" report [8] close by.

1.2

2. NULTI-PROCESSING AND DISCUS

The design and use of any computer system must be considered over a number of
years. As time progresses it becomes inevitable that there will be changes in
the basic function of the system and also a change due to curing faults that
must occur. The people that carry out the system enhancements and the repairs
are not the same. As well as this the calibre of the staff can decline in
capability over this period. For instance, consider the case of a compiler or
operating system that needs to be written for a particular computer. A very
high calibre team are employed by the company to do the initial design and the
immediate debugging that is required over the first few man-years of use (in
practice this period could be only a few months). Assuling that the company
employing them does not provide considerable incentive for them to stay in
terms of either money or interest in work, these people will move on to where
the jobs or incentives are more alluring. The company who market the compiler
are now obliged to maintain and support their product. In order to maintain
their product the company will find it necessary either to employ more
software engineers or to use the original team on an external basis. It is
more likely that the former will be the solution since it is going to be more
under control of the host company. The people that will be attracted, by what
is only a maintenance job, are unlikely to be of the same quality as the
original team. As the complexity increases and the current software team
becomes more and more distanced from the original one, there must come a point
when the system becomes unmanageable. This manifests itself in a continued
degradation of the service and an inability of the system to protect itself
from unforeseen random events. This is because bugs creep into the system
owing to an incomplete understanding of a large software system.

It is thus very important that the system is resistant to errors. In order to
achieve this a considerable amount of discipline must be used in the design of
the system. Up to a few years ago this was achieved in the single processor
computer by having large operating systems that carried considerable overheads
in checking the integrity of the operations being done. Although the
applications programs may have been well protected they relied entirely on the
discipline of the programmer and the reliability of the operating system.

We considered that a new look could be taken at the problems inherent in large
amounts of software. This decision was made at a time when the microprocessor
was becoming available cheaply, and thus hardware was no longer a restraining
influence in the construction of a computer.

As I mentioned above, one of the keys to producing a reliable system was
discipline. What we felt necessary was a way of forcing the user to use this
discipline, so that he was unable to structure his programs in any other way
than that we set him. Another point is that if he does make errors (or indeed
the operating system makes them) they should be contained so that the effect
on other parts of the system is minimal.

2.1 THE FUNCTIONAL APPROACH

Any non-trivial task that is undertaken is split, consciously or
unconsciously, into a set of smaller sub-tasks or functions. These functions
are further split down into smaller functions until it is inconvenient or
impractical to go any further. With a computing problem these functions are
generally program segments or pieces of hardware. The' program segments are
able to run a process to carry out the job required. Each piece of functional
software operates on one job, or transaction, at a time and the job is passed
from function to function.

2.1

It is convenient to break down a task into functions of manageable size. This
process is known as "functional decomposition". Before going on the phrase
*manageable size" is worth considering. I consider that it implies the
following attributes.

i. It must be easily understood in its entirety by one man.

ii. The documentation must be easy to follow and must parallel the structure
of the software.

Basically a function should be a "brain sized" package.

On a single processor computer processes running on these functions are
dynamically created and destroyed and run by the operating system scheduler.
Each is given a certain amount of time on the processor. The time is
terminated by a logical wait point in the program, such as waiting for an
unavailable resource (known as co-operative scheduling), or a "watch-dog"
timer (known as competitive or pre-emptive scheduling). Each time the
operating system must correctly save away the context. Then it must 1, the
context of the next process to be run (usually determined by some * m of
priority list) which is then run for its alloted time. There ai nany
disadvantages to this scheme.

i. It is impossible to improve the performance of a badly split -m

except by redesigning it - a considerable task usually.

ii. The operating system is a very large complex piece of code that includes
a scheduler, which implies unreliability. If any form of automatic
procedure was going to be tried to prove this very basic part of the
system correct, it would be better to have the operating system as small
as possible.

iii. An error in one part of the system can affect the rest of the system.

The advantages are:

i. The peripherals are connected to all the functions.

ii. Code which is common to other functions can be shared. For instance only

one copy is needed of the operating system.

iii. When data is sent from one function to another the actual data need not

be passed, only pointers to where that data may be found.

To sum up then, it is convenient to break down the required overall task into
functions of manageable size. These functions can then be mapped onto the
particular computer to be used. However the design is done, the end result
will be a system consisting of several functions, which may or may not be
dynamically created and destroyed and which are mapped onto one or more
physical processors. Usually this involves the provision of a complicated
operating system to provide scheduling and time sharing of the functions. With
the advent of the microprocessor, it has become becomes feasible to consider
providing one processor per fixed (non-dynamic) process. It is this idea

*. which we took for DISCUS.

2.2

2.2 THE DISCUS APPROACH

The required software system is split into functions and each function is
executed on a self-contained microcomputer, and that computer executes only
that function. Thus no complicated function changing, or scheduling operating
system is required. Error containment between functions is achieved at the
first level by their actual physical and electrical separation.

I feel that the idea of one processor per process is easy to understand. No
complicated operating system and/or master processor is required. In the
mature system, programs will reside in PROM memory, minimising errors. The
inter-function communicators are simple and precisely defined.

The system is also flexible, because processing power is available in small
processing steps. The design of DISCUS makes it possible to add a processor,
complete with PROM program, either as a duplicate for an existing function,
nominally to double the throughput of that function, or as a replacement for a
failed processor. I will return to exactly how the DISCUS array is connected
in section 3.

2.3 MULTI-PROCESSOR SYSTEMS

To say that a system is a multi-processor is not to tell the complete story.
There are several classifications which I must define before any further
discussion is continued. The following list is based on work presented by
Searle and Freberg [2], in a general discussion of multi-computers.

REDUNDANT SYSTEMS provide unit replacement on either an automatic or manual
basis. Usually in modern systems the former is employed, which requires
sophisticated failure detection and automatic 4ystems recovery. The problems
of recognising a failure when it does occur is difficult. At present
detecting all the faults in a system is virtually impossible, although
detection to a degree where the system is able to give almoLt perfect service
is now relatively common. These systemi are most prevalent in areas where
continued correct service is paramount: areas such as spacecraft systems and
the nuclear industry. This area has been very well explored by many and I do
not intend to consider it for DISCUS since the latter is not intended to be
primarily a redundant system.

PIPELINING is a way of exploiting the basic internal operations of a
computer. The normal "fetch-do" cycle can be interleaved by more than one
processor on the same bus, hopefully, therefore, achieving higher data
throughput. The new breed of micros (8086 etc) use a form of look-ahead
pipelining to achieve higher procesor speeds. A first-in first-out
instruction store on the code input is used to buffer instructions up to 6
ahead. The Intel 8086 is in some respects 2 tightly coupled micros co-
operating together to form a high performance 16 bit micro. The 2 parts are
an Execution Unit which performs the basic processing functions, containing
the data registers and the arithmetic unit, and a Bus Interface Unit that
provides the instruction fetching and bus control, allowing best use of the
memory and peripherals. The pipelining I am considering here is generally used
at a fairly low-level in the structure of the computer and need not concern us
any further here.

NETVORK SYSTEMS are perhaps the most familiar form of interconnected computer
systems to most people. The connections between them are via long distance
data channels which must in most cases be serial. Because of this serial
working, rigid protocols must be used such as HDLC. These networks are
essentially data links rather than problem-sharing networks. Again I do not
intend to go any further with them.

2.3

MULTI-PROCESSOR SYSTEMS consist of a set of tightly coupled processors working
co-operatively to perform a single task. Within this classification we can
identify two further sub-divisions given below:

i. The first type is a little difficult to name: Searle and Freberg call

it a Oulti-prooessor' System, but this is perhaps rather too vague and
it might be better to add the further classification of *transactional-
based multi-processor" as opposed to the Ofumntional-based' system below.
In the transactional system there is only a single executive/scheduler
which can dynamically allocate tasks to each processor. There might be
only one cpu in which case the system should really be called a "multi-
process" system.

ii. The other classification is the wFunctional Based System" or as it is
sometimes known the wDistributed computer system. The hardware is
similar to that above, but here, instead of each processor being capable
of running any of the functions, each unit performs a dedicated function
and no re-allocation of this function takes place during the running life
of the machine. It is only now that the hardware has become available in
sufficiently small form and cheaply enough to warrant this approach to be
tried - DISCUS is such a system.

It is now assumed that most new developments in technology are done because
they offer a benefit over their ancestors, although this benefit is often not

immediately apparent. It is instructive, therefore, to consider the
advantages that we hope to derive from connecting more than one computer
together in the ways indicated above.

The speed of system response obviously must be among the prime reason for
multi-processing. Despite the advent of microprocessors and their short
internal connecting length within the integrated circuit, the time is rapidly
approaching where the speed of light is the limiting factor in pure speed
performance of a single processor.

I must emphasise that I do not consider that absolute processor speed is an
essential criteria for computing power, and that speed combined with a measure
of the amount of parallelism must offer a far greater indication within a

system of that system's power and throughput. This parallelism can be
obtained by several methods: multiple processors, increasing the word length
to name but two.

By causing the system to have an amount of parallel processing, we can achieve
an apparent increase in computer speed. How much increase we actually get is
not as simple as doubling the speed for doubling of the number of processors,
and the relation between these two quantities is not linear. The reasons for
this lies in the hardware constraints such as store contention, and the
software deficiencies imposed on the original selection of functions to be
made parallel. In future the penalty of having designed a badly split system

may not be so concerning, since hardware is cheaper than software and adding

another processor to help a badly split system would be cheaper than
redesigning it.

Resilience of the system to random and deliberate events that cause the system
to fail must also be a very strong reason. The ability of a machine to

reconfigure itself by function sharing when a processor fails is an important
one in the consideration of multi-computers, especially in real time systems.
The rate of system degradation in a multi-processor system can be arranged to
be gradual in comparison to its single processor brethren which usually fail
catastrophically. Methods of failure detection and the recovery to be taken
in the event of this failure must concern greatly the designers of real time
multi-processors.

...... • 2 .4

2.4 TYPES OF PROCESSOR INTERCONNECTION

The way in which computers are connected to form a multi-computer system has a
fundamental effect on the final system performance both in terms of the speed
and reliability. How these various connections are derived do not always have
a firm foundation in science but result from such factors as the job the
computer is going to perform. Often it can reflect the designer's own personal
preferences which, in the past 'as led to a less than optimum service from
the system. It is becoming poisible however, with modern, cheap hardware to
optimise this design over 2 or 3 iterations to get the best performance from
the system. Although I must add that iteration is nopsubstitute for sound
design in the early stages.

Up to now there have been a number of classes of computer interconnection. I
can summarise these briefly as [2)[11:

i. Dedicated Bus
ii. Multiporting

iii. Single Time Shared Bus
iv. Multiple Time Shared Bus
v. Crossbar

vi. Star Connected
vii. Ring

Obviously these cannot be completely watertight divisions as many multi-
processor system are amalgams of some of the various types. Also the
classifications given here cannot be considered as definitive but are
presented only as a guide.

LOCAL cuLOCAL CUiOSTORE/ STORE CP /

LOCAL
BUS

BUS BUS
INTFC INTFC

DEDICATED BUS

FIG 1. Dedicated Bus System

2..1 Dedicated Bus

A Dedicated Bus System, Fig 1, is one in which there is no permanent link
directly between processors. There is no intermediate store between the 2 to
provide common data base or interprocess/function channels. Any data base
that is required in the system must either be held common in all processors or
else in only one of the processors dedicated to data base handling. Each
processor must obviously be capable of accessing neighbours' stores in order
to pass messages between themselves. It follows therefore, that some form of
store protection local to each processor is required to prevent accidental or

2.5

deliberate corruption of the local stores within the system. Software and
hardware methods can be used. The software protection is afforded by having
all interprocessor accesses carried out via an operating system that must be
resident within each processor. The hardware protection can be done by having
only a certain area of each store reserved for "global" use and thus making it
physically impossible for one processor to access another's local program or

workspace. It should be noted that the system-generator should handle all the
memory allocation at compile time for each of the segments in the processors,
with some of the access violations being detected here.

One modern system which could be thought of as a dedicated bus system is one
formed from a number of Intel SBC80/30s [4]. Each processor is able to access
all its local store as well as that of everyone else. Each CPU, memory and
I/O resides in one card with the edge connection providing access to the
dedicated bus. By making this bus their own standard Multibus microprocessor
bus, it is possible for Intel to put on this bus common resources such as
store, I/O, real time interrupts etc. However, by doing this it must cross a
classification boundary and borrow from the star connected class.

An advantage of the dedicated bus approach is obviously one of simplicity and
thus low cost, especially in cases such as Intel's. If however the dedicated
bus is distributed too much geographically, then there will arise
complications in providing suitable electrical termination and driving to
ensure best use of the bus. The maximum speed will obviously suffer, as will
the cost of providing more hardware. It is best to use very tightly coupled
systems for this approach to prevent undue length of the dedicated bus. For
reliability, it is necessary to provide bus replication (Multiporting see
below), and it then becomes increasingly more difficult to provide easy
connections within the system because of the amount of bus interconnections
required to each processor.

CPU

E
M 2

FIG 2. Full Nultiport S

2.4.2 Multiport Systems

Kultiport Systems follow on from trying to make a dedicated bus system more

reliable by providing more interconnection paths between the various elements

2.6

of the system. There are 2 variants of the system: the one with all the
stores, CPUs, I/O devices etc being interconnected fully with no common
(global) store, and the other with local stores and several dedicated busses.

The fully interconnected multiport system, Fig 2, provides better throughput
since the contention for individual stores must be lower than those systems
with single connections. Each memory, etc must have an interface handling the
inputs from each CPU and arbiting between the various store requests. The
arbiter is of necessity complex from sheer quantity of inputs and thus does
not lend itself to system expansion. The size of the final system and
possible expansions must be known clearly at the start| which is not always
practical or possible. The cost and design of the connectors and the cable
represents a substantial part of the total cost of the system. In general
this type of system is not found in small mini or micro applications because
of its complexity.

LOCAL

Buss

FIG 3. Mltiport System with Local Store

The other type, Fig 3, is one that could be fairly easily applied to these
lower-end processors and is really only an enhanced version of the distributed
bus systems discussed above. There are now several of these dedicated data
paths so that contention is reduced and there is also bus redundancy by having
more than one bus. The system only uses those busses for data or message
passing rather than for the program, the latter carried out on the local bus
with its own local store. It is still necessary to be fairly careful in the
initial system design because of the complex nature of the bus interfaces and
controllers.

2.4.3 Single Time Shared Bus

It is possible to consider this bus, Fig 4, as a resource similar to the
various memory and peripheral devices that must be requested when use is
required of it. Because of this there must be some form of contention

resolving circuit. The amount of contention must depend on several factors.

2.7

The first is the speed of a processor and the time it actually has control of

the bus; it might be possible to have a machine with a relatively slow
instruction execute time but a very fast instruction fetch. This would occur

in a processor where the instructions are of a far higher level than the
micro-instruction code within the processor. The memory cycle must also

contribute to the bus occupancy by a processor. If a refresh cycle on dynamic

semiconductor store is taking place, an individual processor requiring data

from that store would obviously be delayed. This particular problem can be

helped by designing a suitable refresh mechanism which interleaves refreshing
with processor requests. A final factor in overall system throughput is the

number of master control devices using the bus. There must come a time when

the number of processors is such that the addition of another processor can

cause the system performance to degrade rather than improve.

For all this, the single time shared bus does have its advantages. The cost

of the module interconnections are minimal and it is possible to add new

devices onto the bus very easily. These factors are offset by there being no

redundancy in the system, a failure of the bus will result in total system

loss. If any sort of redundancy is required, it is necessary to go to a

multiple time shared bus approach.

CPU CPU CPU CPU
I2 3 4

FIG 4. Sinale Time-shared Bus

2.4.4 Multiple Time Shared Bus

A Multiple Time Shared Bus, Fig 5, provides several alternative paths for a
master device on the system to access a slave. It is understood that there is

in the system some form of circuit that can inspect a bus, decide on its

busy/free state and if necessary transfer onto another bus. The redundancy on

such a system must be greatly increased by the increased number of alternate
paths. In order to decrease complexity it is possible to assign particular

devices to a bus, but this will detract from the redundancy offered by the

system.

An example of this type is the Plessey System 250 Real Time computer, which

Plessey say they designed with high system integrity and redundancy in mind.

The controller of such a system must necessarily be complex and expensive, but
it is possible to incorporate within this controller such features as priority
marking of both busses and devices, and error recovery procedures.

2.8

CPU CPU CPU CPU
2 34

FIG 5. Multiple Time-shared Bus

2.4.5 Crossbar Connected System

If the Multiple Time Shared Bus is taken to extremes, it becomes the Crossbar
Connected System, Fig 6. It is a method of connecting a number of CPUs to a
number of memories and peripheral devices on a one to one basis. An analogy
of this system might be a telephone exchange where subscribers are connected
by a set of switches. These switches must necessarily be complicated when
connecting elements of a multi-processor and there must be a cost penalty when
implementing this type of approach. It is possible to have several pathways
connected at the same time giving the crossbar system a high degree of
parallelism and thus a high throughput. Another disadvantage besides the cost
is that the system is very sensitive to crossbar switch failures, thus
preventing 2 elements of the matrix being connected. To overcome this problem
would mean duplication of, if not all, then those crossbar switches that would
cause maximum disruption to the system.

CPU

p II I E II
--I

MATRIX I\
SWITCH /

/ / \
/ I \ \ I/

/ / \

/ / I/O

/ / \

/ / \
/ / \

MEMORY

FIG 6. Crossbar Connected 3st

2.9

2.4.6 Star Connection

The Star Connected System, Fig 7, is generally applied to geographically
distributed computers being connected via some form of data link to a
centralised processor. The centralised processor is usually the control
processor in the network using the resources within the other processors on
the points of the star. As well as being the control processor, this
processor may also be a data base controller providing a "library" function,
with all the other processors acting autonomously. When the system is locally
distributed, that is each module being within a few feet of each other, this
central processor can be pure store, or intelligent store, providing a
centralised data base and message passing device between the other processors.

PROC PROC
PRC2 3 PROC

I 4

CONTROL
PROCESSOR

FIG 7. Star Connected System

In the locally distributed system, the coupling can be made very tight and
then the difference between the star connected system and the dedicated bus
becomes virtually nil. DISCUS is such a system, although DISCUS does not have
a central CPU only a central store. Reliability must be a problem with the
star connected system, which can be solved best by duplication - see the
multiple bus above. The central store can be partitioned into several
sections to provide this duplication but this leads to more complications and
problems with function mapping at system build time due to allocation of these
separated stores and providing a balanced allocation of functions.

2.T.7 Ring Connected System

Each processor in a Ring Connected System, Fig 8, is connected to a high speed
transmission link that flows uni-directionally in a ring round the network.
The problems that occur with a ring system must be primarily connected with
the interfaces to the ring and the types of message passed round the ring.

This type of connection has been utilised in many places, and many examples of
this type have been presented [6]. It offers considerable advantages in both
reliability and ability of module extension. Reliability is enhanced by
having 2 rings or so designing the ring interfaces that they become
transparent at failure. It has been shown that this type of network is very
suitable for micro or mini networks, because of its relatively low cost [7].

2.10

FIG 8. Ring Connected System

We are now in a position to look at the relative merits of all the above

systems and try to derive an approach that is best for a DISCUS machine.
Table 2.1 gives a summary of what I have discussed in detail above.

2.5 THE DISCUS ARCHITECTURE

Having discussed all the above architectures, we have to now consider what is
best for DISCUS, or even if a radically new architecture is required.
Initially the idea with DISCUS was to get some form of hardware working as
quickly as possible. Simulating the system, while obviously useful, was
ignored in order to get a feel of the hardware problems as early as possible
since these would undoubtably effect the software.

Therefore a radically new architecture was out of the question. I maintained
that any "special" components, such as bit-slice processors, should be
rigorously avoided and normal commercially obtainable components should be
used throughout. I was thus constrained to use a fairly conventional
architecture for the individual processors. Let us review what we wanted from
a DISCUS computer.

2.11

i I - -- -- -- -- -- -- I I-- -- -- --- - - - - - - - - - - - - - -

I DISADVANTAGES I ADVANTAGES

Dedicated Bus I Single point failure. i Cheap.
I Access from one processor I H/W commercially
i to another. i available to grow
I Bus contention high. I system.

--- I
Multiport I Access to another's local I H/W redundancy.

I memory. I
I Very complex H/W. I
I Many connections. I
I Memory contention high. I

--- I
Multiport I Complex bus interface. I H/W redundancy.
+ local store I Many connections. I Contention eased.

.-------.---------------------------------------.--------------------

Single shared i Access to another's local l Few connections between
bus I memory. I modules.

I Bus rontention high. I I/O accessable by all.
I Single point failure. I

Multiple time Access to another's local No single point failure.I
shared store memory. I/O accessable by all.

Each card has complex Few connections between
interface. modules.

Dynamic reallocation
possible.

----------------------------- ----------------------------- I
Crossbar I Access to another's local I/O accessable by all.

I memory. I Dynamic reallocation
I Very complex switching. I possible.
I Bus (cross bar)
I contention high.

---- --- ---- --- ---- --- ---- --- ---- --- ---- --- ---- ------------ m

Star connected I Single point failure. I Simple interfaces.
with central I/O not re-allocatable. I Isolation of processors.I
controller I Lots of cables

I I/O not accessable by all.I
--- I
Ring connected I Ring interface [Redundant connections.

I potentially complex. I Suitable for local area
I I networks that are
S1 I geographically
I I distributed.

TABLE 2.1 SUMMARY OF MULTIPROCESSOR TYPES

The first thing is that we did not want to do any complex arithmetic. The
power of an array of processors being used as an arithmetic processor is the
ability to carry out a large number of parallel processes. In most cases this
number is very high due to the types of calculation being performed: it could
be as many as 256 or more. This gives an apparent increase in computing
speed. It is particularly suitable for mathematics that involve large numbers
of iterative calculations, for instance in weather forecasting. Accuracy of
the basic quantities are the most important factors that these machines need.
The speed of response to outside stimuli is not usually critical; there are

2.12

no real time events outside that have to be recognised and acted upon in real
time - although with weather forecasting it would be handy to have the results
of the forecast before the weather actually arrived (but this is not what I
mean by real-time here). The ICL Distributed Array Processor is an example of
this type of computer.

We intended that DISCUS should be used a control computer for real-time
applications. DISCUS needs none of the very fast computing speed or accuracy
of numbers that complex real arithmetic imposes. Where control of external
hardware is required, accuracy and speed are not always the overriding factors
in the choice of the control element. Generally the ability to resist
failure and to reconfigure itself to make these failutes as transparent as
possible to the user are the predominant factors. With DISCUS it was found
that a microprocessor based processor would be quite adequate for the

applications for which it was required. There is virtually no arithmetic
processing in the DISCUS applications, in general only logical manipulation of
data is required. Obviously any increase in processor speed would be
desirable, but it is not essential to many tasks. Our initial overriding
interest lay with the operating system and its recovery mechanisms. In the
discussions that follow the type of tasks that DISCUS is designed for must be
borne in mind before any judgement is given. These tasks require the control
element to be reliable and resilient to failure: an example is circuit
switching in a communications network.

When we looked again at the aims of DISCUS (see section 1) we decided that the
third item had been sufficiently well explored through current (1977)
research. What had not been investigated was software recovery and
reliability and the help the hardware could give to the operating system in

achieving these aims. Although several other benefits and interests were
found on the way, initially there were only two major points that interested
us:

i. Improve the containment of errors.
ii. Reduce the software complexity if possible.

FIG 9. The FunctioaLt Approach

22.13

As I indicated at the beginning of this section we adopted a functional
approach for DISCUS. What was required was a set of functions, Fig 9, mapped
onto a set of individual (local) processors each communicating together via
predefined protocols in order to perform a single job. An immediate advantage
advantage of separating functions onto their own processors is isolation.
This helps to contain errors to a single local processor.

S FCq

35

C2

FIG 10. DISCUS Message Passing

Each function must be able to communicate with its designated fellows. There
are two sorts of communication media that are required; message passing for
the basic transaction, and shared common store for the processing of that
transaction on the functions.

Ideally, in order to contain errors, messages should be passed via physical
channels connected electrically only to those processors concerned, and with
physically restricted access (i.e. Read Only for the destination processor),
Fig 10. Shared store should be accessed via similar restrictions, Fig 11.
However it is not as simple as it may seem to provide this type of
architecture.

FIG 11. DISCUS Shared Store

22.1

2.5.1 Separate/Common Channels

By having separate channels between functions which connect only those
functions that need to communicate, there is no possibility for a function
passing messages to the wrong place. These would consist of individual cables
that connect only those functions that the original functional split dictates.
However there are many disadvantages to this method.

The first is that we lose any ability to change the system quickly. In a
research environment this is highly desirable. It is likely that there will
be several systems to be run on the same machine. Unplugging and re-plugging
the system will be tedious, prone to mistakes and introduce a further point of
failure in the system. If there are a large number of processors, there will
a very large number of connections to be catered for.

If n is the total number of processors:

then (n-) is the total number of connections to be provided.

and n-1 is the total number of channel ports on each processor.

For instance in a 6 processor system there will be 15 possible channels. Each
processor would have 5 connection points. For a 32 processor system the
number of connections would be 496 and 31 ports. The number of connections is
obviously absurd. It could be argued that only those connections that are
needed are provided. In a mature stable system this can indeed be done.
However with the experience of the present application of DISCUS (a telephone
exchange) even this might prove difficult. If some form of central error
reporting or supervisor function were to be used then this one would require
as many ports as there were processors, so the above numbers do not appear to
be very contrived. When the system was being used a research tool it is
extremely undesirable to have separate channels. Each time the system was
reconfigured the channel cables would have to be rewired. Thus there would
still be a large number of connections and the rear of the equipment would
become festooned with cable.

The channels would have to be serial rather than parallel, since the amount of
wiring and number of individual connections would be prohibitive. The
reliability of all these connections would be very low. If the serial scheme
is used, a communications protocol would have to be developed (or borrowed,
like IEEE 488). If a standard serial bus was not available (and even if it
was) circuitry would be needed to interface to the each DISCUS processor. If a
reliable error resistant channel were required a serial bus of the complexity
of the new P896 serial bus [27] would be needed. From this experience of the
new IEEE P896 serial bus this could be up to 50 MSI circuits. Even if the
full number of channels was not used each processor would require all the
ports. With a 24 processor system the number of circuits would be 23 x 50 - a
substantial number. Even if only a quarter of the ports were used the amount
of circuitry is prohibitive. It would be possible to produce a custom LSI
circuit of the controller but this would take time, and be a special item, and
go against the spirit of DISCUS as discussed above. A simple serial scheme
like the V24 interfaces to VDU's etc could be used, but even that would
require several devices to implement.

Perhaps the biggest disadvantage is when it is required to implement one of
the strengths of DISCUS. Duplicating functions I have shown to be one of the
most important features of DISCUS. With separate channels it would be
extremely difficult and take complicated hardware to provide t is facility.

2.15

Ideally the likely functions to be duplicated must be identified before the
system is built and provision made for this with the hardware. To
retrospectively add another duplicate function would be virtually impossible.

There is one advantage: the inter-function communication is faster. Despite
all this however, we felt that separate channels was something that should be
ignored.

2.5.2 Separate/Common Global Store

Arrays of data that are shared between two c" more functions should also
ideally be connected to only those functions that require to access the
arrays. However the problems of having separate global store are the same as
the channels, only more so. In order to achieve a reasonable speed for
transferring large data arrays these connections should not be serial. Now
that these connections are in parallel the problems of the individual
interfaces become even worse than the serial connections. Thus I do not
intend to dwell on this subject further.

2.5.3 Store Partitioning

If it is decided that there is only one common store with a common bus as the
present DISCUS, there are still one or two tricks that we can try to go part
way towards separate channels. It would be possible to split the common bus
into sections with one or two processors on each section, together with a
portion of the global store. In between each section of the common bus would
be some form of "gateway". This would allow a processor on one section of the
common bus to access a global store on another. The design of this gateway
would be complex and how it would be used and linked to the system generator
would also be difficult. Because of this it worth asking whether it is
necessary to split the store bus in this way.

The reasons for splitting the bus are various:

i. To separate channels and common data.

By having pairs of processors (or single processors) on each common store
bus. If a processor wishes to access another processors global store, it
might have to cross several gateways to reach it. Mapping a system onto
this "paired" architecture might not be very convenient and the
functional split might be constrained by the architecture - something
that is not wholly desirable.

ii. To duplicate the paths to store to relieve global store contention.

Only if the functional split has been chosen so that each of the
processors spends more time accessing global store than local store will
the extra global route be helpful in relieving global store contention.
Applications where very large arrays in global store are continually
accessed might be another area where this might help. At present with the
current applications tasks, the main constraint on speed seems to be the
amount of work that the operating system does. I have found that the
overhead in accessing common store is negligible. It does not afford any
reason to duplicate the common bus.

2.16

iii. To duplicate the paths for redundancy.

Possibly the strongest reason for duplicating the common bus is for
redundancy. The chance for single point failure within DISCUS due to the
common store is high. By having a duplicate path this risk would be
reduced. However as I said redundancy is fairly low in the list of
desirable features at present.

The problems of having many physically separate stores and channels, which in
a research environment would need to be continually changed whenever the
software was changed, I considered to be a further complication we could do
without, and so we decided to start with a simple method.

Of all the above methods of connecting processors together the simplest is the
star connection. Its advantages are -

I. There is a centrallised arbiter, which makes it possible to control the
hardware polling to allow fair access to the central global store. You
must remember that all the processors are equal, there is no control
processor. It would be undesirable to have any sort of priority system,
where one processor could get locked out.

ii. The interface to global store is reactively simple.

iii. The global store becomes a tightly coupled extension of the local store,
so that producing code to access global store is simple.

iv. It is impossible for one processor to corrupt another's local workspace
store.

There are disadvantages however -

i. It is possible to have single point failure. This was not considered to
be a good reason for not using this method. Redundancy of hardware,
although an original aim, was soon abandonded for the first hardware in
preference to the other aims.

ii. The input/output to external devices are not accessable from all
processors. It was intended only to have a passive store in global store
with no processors or I/O connections there. The I/O would be connected
to a single local processor.

iii. There are potentially lots of cables connecting each local processor to
global store. I will come back to this problem when discussing the
hardware.

What we have ended up with was not the star connected system I defined

earlier. We have now lost the centrallised control processor, and now only
have a passive message passing/common data store. This store would have its
access restricted via a combination of hardware and software.

At present all the channels reside in a common global store. This store is
the same as the common data store where all the object arrays are placed,
(Fig 12). There is no inherent protection on these channels other than that
provided by the operating system.

It has been the aim of DISCUS to make the hardware and the software as simple
as possible. While in some places this has only been barely achieved, the
bulk of the system is felt to have met this original intention. It is
essential that any new machine should keep to these aims. All the components
should be "off-the-shelf" items. There should not be any need to use custom

2.17

made components. Also technologies such as bit-slice processors should be
scrupulously avoided: they are far too complicated and can cause too many
opportunities for errors at the basic level. The "bit-slice" processor
approach affords a marvellous opportunity to ruin the whole system if
insufficient care is given to the design, and diverges from the DISCUS
principle of keeping things simple.

C1 C2 C3 C4 I

CS C" C' 0CS

C' S1 S2 S3

FIG 12. Physical Connectio

In most practical applications the operating system and the hardware can
protect against most accidental faults. It is impossible to protect against

the determined deliberate saboteur. It only requires an endless null loop
placed in a program to stop the function working, and although there are
software validation methods, these do not ensure totally fault free software.
By having the hardware physically to restrain the programmer, even if he does
make a mistake, the results of this fault are contained locally. By having a
small, secure software kernel with the hardware the applications programs can
be run with a large degree of protection.

Within DISCUS there are several mechanisms at present that help with the
security of the system. At present each function of the system is partitioned
onto a separate processor. Each function is unable to interfere with another
function, either deliberately or accidentally. On any new machine this would
be an important concept to retain. It offers both the ability of secure
functions, and the opportunity for duplication and redundancy.

To sum up, the present configuration of having the processors on a global bus
able to access all the global store equally is probably still the best scheme.
The concept of having separate (serial) channels or partitioned store is
undoubtably a powerful one, but presents difficulties in implementation that I
do not consider worth the effort involved. It would go against keeping DISCUS
simple and thus easy to verify.

There are still other ways that global store/channels can be protected.
Originally we thought that DISCUS could use an "intelligent" common store.

This was supposed to manage the global store and allow the local processors to

address data objects by name. This would mean that virtual addresses would be

2.18

carried on the global store, which would no longer become a simple extension
of the local storage space. Care would have to be taken to ensure that a
mixture of absolute and virtual addresses does not take place. To mix them
would lead to much confusion. Bearing in mind the plea for simplicity, the
difficulties that this presented ruled it out for DISCUS.

It was considered that some form of memory protection mechanism similar to the
Plessey System 250 "capability" structure could be used. This would allow the
operating system to protect global data (and local if necessary) by giving
access rights to the various global objects. The applications program would
have to go through this mechanism in order to reach any global information or
send or receive messages down the channels. Array overflows and read only
arrays can be catered for, as well as illegal accessing other channels. By
keeping the applications programmer away from the global objects directly a
large measure of integrity can be given to these objects. To implement such a
scheme would take a lot of logic, and since there were no LSI memory
management units available, it was decided that this was one thing thIat would
be held over to a future machine. This all meant that there was a considerable
burden on the software to check all the array bounds and read only types on
the arrays in software. It is thus this code which slows the system down when
accessing global store.

2.19

3. THE DISCUS HARDWARE

As I explained in Section 2, DISCUS is essentially a star connected system,
Fig 12. Each processor in the DISCUS array can access a common global store as
well as its own local store. The global store can be up to 7 blocks of
32 kbytes of store, and up to 64 kbytes of store for each local processor. The
program code is stored in local store so that normal processor working is
carried out in parallel with the other local processors in the system. It is
only when a local processor wishes to access the global store, for either
common data or to pass messages to another processor, that any contention
between them might occur. These requests to global storep and all DMA requests
on each local store are carried out completely asynchronously. This relieves
the physical restraints on the interconnection of the various modules within
the system since there is no common synchronising clock, with all the problems
of clock skew that synchronisation brings.

The hardware is designed around a bus system that was developed especially for
the DISCUS multiprocessor rather than use an already existing one. At the time
of the original system design there was only the S-100 and the INTEL Multibus
busses available for use in microprocessor systems. The S-100 standard is an
American based one, developed for, and by, the amateur computing market. This
standard is not as well defined as it should be, not having a central
organising body to monitor the standard, and it is totally unsuitable for
DISCUS, although at the time of writing the IEEE has produced a proposed
standard for the Si00 bus that is awaiting general agreement. The Multibus is
a commercial bus produced by INTEL in America for use on their MDS-800 range
of microprocessor development systems, and, although it is relatively well
defined compared to many, at the time it just did not do what was wanted for
DISCUS. DISCUS requires some specialised control signals such as "Memory
Locked" and "Write Protect" in order to make it function properly. The bus
that was finally developed for DISCUS is by no means perfect, but it has
served to get DISCUS into use; and it is also worth noting that it has not
been thought necessary to add to the bus throughput the development of DISCUS.
Most 8 bit microprocessors can be used on the system (at present the Z80 and
the 8080 micros have been running on the system), but unfortunately the newer
16 bit microprocessors, such as the 68000, Z8000 and the 8086 will have to
have new memory cards etc to allow correct operation.

In all honestly I must say that the present bus, in the light of what we have
tried to do with it, is a shambles. Not a great deal of thought was put into
it and we are now paying the penalty. For this reason it would be necessary to
choose a very well defined bus for the next DISCUS, if possible a standard
one. I have looked at the problems and attributes of busses in a little more
detail in a following section and I will leave the subject for the moment. A
brief description of the present DISCUS bus is given in the Appendices [29).

3.1 LOCAL PROCESSOR DESIGN

By modern standards the local processor design is fairly conventional. Each
section - ROM, RAM etc, is separated on the bus physically, rather than put on
the same card as the processor. It was felt that this allowed a greater
flexibility of how the processors were arranged, although another
consideration was the packing density of the double Euro-cards that were used.
With these cards it would have been impossible to fit the required logic for
the current implementation of DISCUS into a single printed circuit card.

3.1

VDU/LPT/ GLOBAL APPLICATIONS

PTP/PTR STORE HARDWARE

FIG 13. Local DISCUS Processor

Fig 13 shows a block diagram of the local processor. None of the features
offered are particularly novel, except perhaps for the asynchronous
controllers. On all possible occasions the maximum use is made of the
specialised LSI circuits offered by the microprocessor manufacturers. Up to
64 k of store can be used on the local bus. This can be a mixture of RAM and
PROM over the entire range. There is also a small amount of PROM on the

processor card called the BOOTSTRAP PROM. This area of store is not part of
the main store but it is a "shadow" PROM. This means that it is there for only

as long as it is needed during the setting up of the system and then it
becomes unavailable, being replaced by the main local store after
initialisation. By having this piece of store it is possible to set up the

various interfaces on the processor card and other peripheral cards without

having to alter the applications program.

There is a Bus Supervisor Card that provides a check of all the local bus

activity and can detect simple bus faults. From the start, DISCUS has been

concerned with fault detection and the recovery from those faults. With these
points in mind, fault detection and the alerting of the applications programs

and the operating system goes right down to a hardware level. There is a
heirarchy of fault detection within DISCUS, and it is important that the

correct recovery action is taken at every level. For instance, at the hardware
level the detection of faults should only alert the operating system and not

the applications program. This allows the applications programmer only to deal

with applications induced failures. He must put in his own recovery mechanisms

for these failures, after all, he probably knows best. This leaves the

operating system errors to be coped with at that level where possible.

3.2

The DISCUS bus is a fully handshaked system; every command that occurs on the

bus must be acknowledged for correct operation. Failure to do so can be from
several causes:

i. The unit being addressed (store etc) could have faulted, and is unable to
reply.

ii. The unit being addressed may not exist.

iii. A write command could be presented to a read only store, or a write
protected area of store.

All these faults will appear as a failure of the bus acknowledge system. The

Bus Supervisor Card is able to detect these; indeed at present this is the
only fault it can detect. It can provide some form of action to enable
recovery to be carried out. It is also possible to access the bus via this

card in order to monitor activity on the bus using some form of passive Logic
Analyser.

Much use is made of cheap "intelligence" within the DISCUS system. The
peripheral controllers are provided in a variety of forms. The VDU is

controlled by another microprocessor, along with a paper tape punch and a
reader, and a serial line printer on the same card. (See the Appendices [29)

for a description of the program and peripherals currently in use for the

peripheral card.) Using this method many of the peripheral dependent actions
can be done on this card rather than on the main local processor. It contains

its own memory and I/O ports and accesses main store by an asynchronous DMA
scheme. On the present DISCUS system, some of the facilities provided by this
card are: line editing for the VDU, and punch information such as "tape low".
Because the inputs from the VDU normally are assembled into lines that are
passed via a predefined software protocol, it is possible to change the
peripheral card to cater for different types of peripheral without having to

alter the local applications programs or the operating system. Also the local

processor is only alerted when a complete, checked input line is ready.

All the above cards can be used as a single processor facility, plugging into

a standard prewired backplane with a minimum of restrictions on where cards
may be placed on that backplane. The system is based on the standard double

Eurocard board, so that standard commercially available racking can be used
throughout.

3.2 MULTI-PROCESSOR ARRANGEMENT

Each local processor is able to communicate with a global store in order to

store common data and/or to pass messages to other local processors. It was

felt that when the number of local processors exceeded about 6, the number of

cables interconnecting the system would become excessive, since each local
processor requires two 50 way ribbon cables for connection to the global
store.

In order to reduce this quantity of cables when large numbers of local

. processors are used, a scheme of using a "concentrator" in each local
processor crate was adopted. Fig 14 shows the arrangement of a single DISCUS
processor crate with 3 local processors. There is a subsidiary bus, known as

the CRATE BUS, that joins the 3 local processors together. The allocation of
this bus is controlled by the CRATE BUS CONTROLLER. This card provides

asynchronous arbitration of requests from the individual processors for global
store. This method allows a maximum of 4 times the number of local processors

as there are interconnecting cables. In the current DISCUS there is a maximum

number of 3 local processors in each local processor crate.

3.3

LOCAL PROCESSOR

LOCAL LOCAL

L PROCESSOR PROCESSORLOCAL BUS

CRATE BUS
INTERF A CE

RESET LINES

RTCLOCK CRATE BUS

RNPANEL -ICONTROLLER

TO GLOBAL STORE

FIG 14. DISCUS Local Processor Crate

The crate bus is formed by a pair of 50 way ribbon cables that run along the
front edge of the cards. Plate I shows a local crate of 3 processors with its
global store crate; the 2 ribbon cables for the crate bus can be seen across

the front of the local processors in the top crate. Although this would seem
to prevent easy access for inspection of individual processor cards on
extender boards, this restriction is not as bad as it might seem. Plate II
shows a complete DISCUS multiprocessor with 8 local processors. One of these
processors is an MDS-800 development system that acts as the system loader and
also the disk device handler.

Since DISCUS is concerned with distributed hardware as well as software, this
implies well defined interfaces between processors, and to the outside
equipment being controlled. This allows the specially designed external
interfaces to be fully developed on a separate single DISCUS processor with no
front crate bus cabling. A minimum of testing should be required when this is
transferred to one of the local processors in a multiprocessor DISCUS. If it
is required to extend cards with the crate bus in place, it is possible to fit
an extra long crate bus cable so that the extender cards can fit.

Each processor in a local crate is user controlled from a common front panel
at the right hand side of their crate. This has the reset buttons and the
fault lights for each local processor within that crate. There are also
indicators for each power rail within the crate. Connection to the global
crate is taken via a pair of ribbon connectors at the rear of the local crate.

I l3.4

PLATZ I. Local Crate with Thre Processors

3.5

PLATE II. A Complete DISCUS Computer

Note: This shows a 8 processor system with an Intel MDS-800 minicomputer
as a ninth processor for system loading and as a disk handler. The
blank space is for application's hardware.

3.6

TO LOCAL CRATES

[-I NTER-] IFACES |

FACESR5AM/PROMGLOBAL GLOBAL UP TO
STORE - STORE 7 BLOCKS

INTERFACE INTERFACE OF 32K

CONTROLLER

FIG 15. DISCUS Global Store Crate

3.3 GLOBAL STORE CRATE

The global store consists of up to seven 32 kbytes blocks of store. This store
can be either RAM or PROM fully interleaved down to blocks of 2 kbytes. The
global store bus is identical to that on the local processors, except for the
DMA request lines, so that all the memory cards and supervisor cards can be
used on this bus with complete freedom. However, there is no facility for
input/output on this bus, as it was felt that the I/O should be handled as a
distributed function rather than a global one.

Each local crate (up to 8) is connected to the global bus via a GLOBAL STORE
INTERFACE, Fig 15. This interface contains all the necessary cable
termination logic for the ribbon cables from each of the local crate bus
controllers. This is a global store controller that arbitrates between the
asynchronous requests from each local crate. The main global resets common to
all the processors are generated on this card, which also has the power
indicators for the global store crate.

3.4 DISCUS ADDRESSIEG SCHEME

In order to address its own 64 k of store and 7x32 k of global store, each
*. local processor has an extra 3 bits on top of its normal 16 address bits that

most common 8 bit micros use (8080, Z80, 6800, 2650 etc). These 3 bits are set
in an Auxiliary Address Register (AAR) as a page number bf global store, where
each page is 32 kbytes. These page bits are set by addressing an output port
on the local processor card. So that this port is not being set continuously,
the most significant bit of the normal 16 bit address is used to envoke these
extra page bits. When the msb is logic zero, the page bits have no
significance to the complete address and normal addressing can be carried out
over the first 32 kbytes of local store. The 3 page bits can be set to

3.7

anything since they are not used. When the normal msb is logic one, the 3 page
bits are used to make up a complete 19 bit address. When these bits are all
zero, the processor addresses the top 32 kbytes of local store; while any
other value of the page bits addresses the appropriate page in global store.

The convention that as been adopted for the page number is as follows:

ADR15 ADR16-ADR18 RANGE NAME

0 X X X 0 k - 32 k Local 0
1 0 0 0 32 k - 64 k Local I or Global 0
1 X X X 64 k upwards Global 1 - Global 7

Note: i. Address bits start at bit 0.

ii. Local 1 and Global 0 are alternative names for the same address
range.

It was felt that this scheme was good enough for the DISCUS system despite its
disadvantages. It allows for large amounts of data storage in global store,
which is a prime requirement of the systems for which DISCUS might be used.

Two other signals are produced by the AAR - "Memory Locked" and "Write
Protect". Memory Locked is essential to produce the indivisible operations in
global store so that semaphoring on global objects can be done correctly.
Write Protect is used by the operating system for read-only arrays in global
store.

One disadvantage of this method is that the global store is no longer linear.
Since bit 15 is used as a page select, even 32 kbyte blocks of global store
are unavailable. For instance:

28000H - 2FFFFH will do operations in global store page 02
40000H - 47FFFH will access OOOOH to 7FFFH in the local store

The fourth digit of the 5 hex digit address must be greater than or equal to 8
to select global store, since this ensures that bit 15 of the address is a
logic one.

This is however one clear advantage that this method has that makes it very
attractive to us. It is impossible for any code that is in the top half of
local store to access directly the global store. In order to access global
store the AAR paging bits have to set to non-zero. This action then removes
the top of local store, and the code that was running effectively vanishes,
the results of the operation being somewhat unpredictable. The operating
system makes use of this overlay by putting the applications programs in this
space, thus making the applications programs go through the operating system
in the lower half of store to get at the various global objects. There would
still be ways of accessing global store if the applications programmer was to
write a program to the lower half of local and then run it. This eventuality
has been sorted out in the DISCUS Mk 1.5.

3.8

3.5 SYSTEM LOADING

In order to develop programs for the system, a set of compilers and linkers
are used on a separate host computer. There are 2 methods currently being used
to transfer the assembled machine-code programs onto the DISCUS
multiprocessor.

i. By programming a set of PROMS and using a PROM card for the main code
storage in local memory. This is a very time consuming process, and if it
is required to make a change, however small, the whole process of erasing
and reprogramming has to be carried out: which procedure can take
several hours. Only when a final system has been successfully run over a
period of time and confidence has been gained on the integrity of the
system and all its various programs, should the software be committed to
PROM.

ii. By loading via some external means into RAM. This allows the programs to
be loaded much quicker.

At present, DISCUS can use 2 methods of type ii program entry. The first is by
paper tape produced by the host computer and entered using a reader connected
onto the VDU peripheral cards. A MONITOR program, see the Appendices [29), was
developed for DISCUS that allows a limited amount of user control over the
system via a VDU. One of the facilities provided permits the reading of a
paper tape formatted to INTELs Hex format (25] into memory. This has proved
particularly useful in debugging the hardware and commissioning new cards into
the system, and also for running small programs on either a single processor
or one or 2 processors in a multiprocessor. Also it has been used for getting
the initial applications and operating system software running.

This scheme obviously requires that there is a VDU card, VDU and paper tape
reader on every processor within the multiprocessor which just is not
practically or physically possible. A better solution is to put a simple
bootstrapping routine into PROM on each processor and load the programs via
global store using only one processor to do the loading from the host
computer. Rather than use paper tape, it was decided to load the programs from
the same backing store medium of the host - floppy disk. In order to load
this, it meant that a floppy disk unit had to be interfaced onto one of the
DISCUS processors. This requires that a special card be made to interface the
disk drives onto the DISCUS bus, along with a considerable amount of software
to control the transfer of data to and from the disks. A more satisfactory
solution was found to be in turn the host processor (an INTEL MDS-800
minicomputer) into a DISCUS processor. This enables programs to be loaded
directly onto DISCUS after they have been developed, thus saving a
considerable amount of time. Only one card was necessary in the MDS-800 to
provide the correct interface between the INTEL Multibus and the Global Store
crate. The system that was used is described in the Appendices [29).

3.9

4. RECOVERY II DISCUS

In any piece of electronics hardware there will inevitably come a time when it
will fail. This time may be of the order of years or may be as short a time as
hours when the equipment is in a harsh environment. The failures that occur
may be in a single component or may affect a whole group of components. They
may be catastrophic, when the failed components will be obvious from a visual
inspection (or smell), or the failures may leave the equipment physically
intact, but electrically wrong. All these faults must be detected and cured.
In almost every application that does not include a computer or does not rely
on the equipment to give uninterrupted service, the diagnosis and repair of
the equipment is usually a manual process. The full testing of the item can be
done either automatically or manually, the former being used when there is a
large volume of testing to be carried out.

4.1 FAULT DEFINITION

Before going any further it is essential that some form of definition of a
fault is made. Until we know any better, the following short definition is
made:

A fault is any deviation from the required operation
of the equipment.

In saying this there are immediately a number of difficulties inherent in
applying this definition to a computer system. The primary difficulty is
concerned with the phrase "required operation", because this implies that the
required operation has been completely and correctly defined in the first
place. There are several points in the design sequence where it is possible
that faults will be generated that prevent the final equipment from behaving

in a manner that the original designer did not want. There must be many
occasions where customers try to rectify what they consider to be faults on
their equipment which are in fact quite valid design decisions by the
manufacturer because the customer did not define properly what he wished the
equipment to do. It is essential therefore that when an equipment is designed,
the correct definition is made of what is required from the final equipment.
It is only by knowing exactly what it should do that it is possible to see
when it deviates from its design specification.

Thus our original definition of a fault can be altered as follows:

A fault is any deviation from the required operation
of the equipment as defined by the original
requirement.

We can split this definition further:

A Design Fault is one that is caused by an error in
the design process. It can be from incompetent
knowledge of the job being done, or from an
inability to understand the original design
requirement.

A Transient Fault is one in which no immediate
replacement item of software or hardw'are is
required, although it will require some automatic
recovery action.

il

A Permanent Fault is one in which some form of
replacement item is required to achieve the correct
overall operation.

There are both transient and permanent faults through Rll the various stages
of design, manufacture and use. The hardware faults can be either design
faults or ones that occur due to failure of some component. The failure of
this component is an unforseen event for the design engineer and he can do
nothing about it (except to ensure that his equipment is generally robust
enough to cope with failures - no mean achievement). ALL the software faults
will be design faults - there is no such thing as component failure in
software, thus the system must be robust enough to cope with these faults.
This is done by forcing disciplines on the programmer by the way he writes the
program. The operating system can provide standard protocols that force a way
of writing, and the programmer can adopt defensive programming to check for

errors. DISCUS was initially intended to be a hardware redundant machine as
well as having a standard operating system. However the former idea was

abandoned in favour of the software because it was felt that hardware
recovery/redundancy techniques were relatively well explored, while software
recovery was not.

4.2 THE DESIGN PROCESS

It is the task of the design engineer to take the specification that has been
produced and turn it into a design for real equipment that can be handled by a
team of engineers whose job it is to produce the real equipment. We have a
hierarchy of tasks that have to be controlled in a very defined manner in

order that the correct implementation of the original intention is produced.
There are a considerable number of potential places at this level where faults

can be introduced into the system. The majority of these are almost certainly
bad design, with the rest being misinterpretations of the original
requirement.

Any computer system whatever the size, must be specified rigorously from the
start if a properly designed and maintained system is the goal. The functional
specification of the system must be the starting point of any design.
Initially this specification must be a total system description and of a
relatively general nature. As the specification design proceeds, the
specification is gradually broken up into a set of inter-related functions.
This process continues until the point is reached where it is impossible or
inconvenient to break down the design any further. These functional blocks are
either simple primitive software operations, such as procedures, or the basic

hardware building blocks discussed earlier. A large part of the design is
concerned with the various interactions between all the software and hardware
blocks. In designing a functional block it is desirable that the interactions
with its neighbours are as simple and as few as possible. With real time

computer control systems, a large part of the design c.ocess must be concerned
with the problem of ensuring that when the various tunction modules interact,
they only do so via the specified interface and not by accidental or
deliberately wrong channels. Not doing so can . lt in system failure,

especially in cases when a common data base is invol, This failure could be
catastrophic, affecting part or all of the system, or it could subtly alter
the systems response to stimuli. This latter is more difficult to detect and
can be ultimately no less damaging than the catastrophic failure.,

It is important therefore that the overall system designers make the standard
interfaces between each functional block as rigorously controlled as possible.
With interfaces between modules of software sharing the same store, this is
obviously more difficult than with hardware, which has physically discrete

connections. In order to ensure that the relevant software protections exist

on a single processor/store computer, there has to be a complex operating
system/scheduler, which must trap errors within the software; and obviously
this operating system is going to be prone to errors like all software.

When someone designs a circuit or a program, it is normal that they would like
to hold the entire thing in their head. By doing this a much greater
appreciation of the whole design is gained and possible fault conditions can
be isolated at a very early stage in the design process. When several people
are involved in the design of a single highly interconnected piece of

equipment that uses both hardware and software it is impossible to predict the
behaviour of it when only part of the final equipment is under one person's
design authority. As a result, when the final testing is done, there can be a
multitude of interface problems that can take a great deal of effort to put
right. The only way to really overcome this is to have a rigorous approach to
the design specification. The interfaces must be as simple, well-defined and
obligatory as is possible. Divergence from these must be allowed only as a
total last resort. DISCUS allows this to happen quite naturally with its
concept of one function per processor, although the channels and common store
between the functions must be no less well-defined and adhe. ad to. As I have
said before the best way of thinking of the power of a multiprocessor like
DISCUS is that it provides each person with the opportunity to have control
over a "brain-sized" package of software that he should be able to grasp in
its entirety with simple interfaces to other functions (assuming however that
the initial function split was carried out in a well controlled manner).

4.3 FAULT DETECTION

This phase can be the most difficult, since it has to encompass a wide variety
of faults. These may be of the "its obvious because I have disintegraed" type
to the "I think I will fault every 10 days for a few milliseconds". Both
extremes present unique problems which must be catered for when including some
form of mechanism for fault detection. In a large computer installation, it is
hoped that the more catastrophic types of failure do not often occur. The most
common are the single "quiet" failure in a single module, are nowadays
probably a failure of the logic (caused by an integrated circuit).

The impact of this will be dependent largely on where the offending component
is located. For instance if it is a store location it might be possible to
continue using another part of store; but if it is the main bus circuitry,
unless there is a degree of redundancy in the design, the failure will cause a
complete failure of the system.

The faults can be detected at many levels of the software and hardware
hierarchy; indeed it is essential that each level is equipped with its own
detection mechanism if a successful attempt is to be made at isolating the
fault.

At the highest level we have the applications programs and any specialised
interface equipment that is being controlled by those programs. When

considering the design of his software, the applications programmer must be
aware of all the conditions that lead to failure at his level of the program.
These faults must be as tightly contained as possible, so it is essential that
the mechanism for detecting them is included in the design from the earliest
from the earliest possible moment. The designer must try to prevent these
faults from descending to the next level down, which is the operating system.
It is possible to use any error detection features that the operating system
offers, but the latter should not have to inform (or usually have the power
to) the applications engineer of any faults in his software other than where
it has to deal with system variables and some system hardware. At this highest
level, there can be either hardware or software failures. The hardware

failures resulting from the applications hardware can usually be detected by a
combination of software and specialised hardware. For the moment, we will
ignore these failures as they are chiefly the responsibility of the
applications engineer, although it must be stressed that they must form part
of the complete fault detection scheme. The software failures can be more
transitory and elusive and it is thus essential that a well structured and
disciplined approach be taken with the applications software (and at all
levels of software). The situation is helped at present by the gradual
introduction of languages that force this discipline on the user. One of the
most common is PASCAL. With its highly structured approach, and the many
methods of bound and variable type checking, a user can use this to produce a
very tightly controlled environment for the running of his applications
programs, albeit at the expense of more code and thus more time compared to
the unstructured languages, such as FORTRAN. Although it should be noted that
there exist hardware mechanisms for doing such bound checking that will
alleviate most of these speed limitations (see below).

There seems to be at present an eternal quest for speed as if that was the

solution to everyone's computing problems. While it must be agreed that speed
(or the lack of it) is a serious concern, the ability to protect against
deliberate or accidental failures and thereby the time it takes to recover
from these failures must be considered to be a more dominant factor in the
choice of machine and language.

It is within the operating system that the greatest burden of detecting and

correcting faults is carried out. The operating system is able to detect a
fault at its own level and to a limited extent within the hardware, although
this will usually be via some indirect means because the hardware has caused a

failure of some function or task and the protection mechanisms within the
operating system have been alerted. Generally the operating system is unable
to detect true applications faults except where these cause failures in data
or message handling procedures. In most operating systems there should be

extensive fault detection mechanisms that guard against invalid or
unsuccessful operations, while being invisible to the applications programmer.
At present with single processor machines, the bulk of the effort of both
detection and action of faults must necessarily be done in the operating
system. There is a hierarchy of levels within the operating system that each
have the ability to detect a range of faults and report or cure these faults.
With the advent of cheap processors, it has become possible to spread the

computing power both vertically and horizontally in the hierarchy so that it
is feasible to detect faults more readily and to place a lot more of the
detection in hardware where before it had been in the operating system.

With the hardware, unlike the software, the possible faults tend to be both
more permanent and more predictable: when a component fails it will usually

do so more permanently, but software bugs can manifest themselves far more
fleetingly only when a special set of circumstances arise. It would seem
sensible therefore, that as much fault detection as possible is carried out at
the hardware level where it is easier to isolate faulty areas. However, the
hardware must be designed from the start to make this process as easy as
possible. In order to achieve this, use should be made of intelligent hardware
using microprocessor. By doing this it is possible to place at the hardware
level a degree of fault detection that up to now has been unattainable. By

correct design, it should prove possible to detect faults down to a very small
module level, although it may be argued that, due to the miniaturisation of
components, this level need not be that small, giving a corresponding
reduction in the amount and complexity of the fault detection circuitry.

If the impression has been given in preceding paragraphs that all hardware
faults are well-defined and permanent, then a few words of caution are
necessary. While the majority of hardware faults are indeed of this type,

4.4

-- - -

there are enough of the obscure and transient faults in the hardware to make

practical detection extremely difficult.

SOFTWARE CHECKING. At present in DISCUS most of the checking is done in
software. This provides for bounds checking on all the arrays in global store

and the access type (read-only etc). This checking is a part of the operating

system and not inherent in the language used to write the operating system.
The operating system can only check those faults that pass through it, it
cannot check applications errors. These errors would have to be catered for by
the designer of the function software. There are however facilities in the
operating system that the applications programmer can use to help the function
recover from an error.

As we will see the present aids to checking and recovery are somewhat
limited - especially in the hardware. A Mark 1.5 version of DISCUS has been

designed and will be the described later in this section. Before I do that it
is necessary to look at the features a little more generally, and also their
application in a future design of a DISCUS like system.

4.4 MEMORY AND I/O ACCESSING

This covers several areas most of which are normally done in the operating
system or inherently as part of the language used (PASCAL etc). It can be
split into several areas -

Priviledged Access. This is where only certain parts of the system can access
some of the memory or I/O ports. For instance, within DISCUS it is proposed

that only the operating system be allowed access to the system I/0 ports, and
that the user be given only part of the I/O port range for applications use.
This will prevent the user from deliberate or accidental use of the system
level facilities. Most important of these is the AAR, since it is by this

means each local processor gains access to the global store. As has been
described above the Mark 1 DISCUS uses the inherent store partitioning
provided by global store overlaying the applications programs to give some
protection.

Restricted Access of Store. In PASCAL, if a program accesses an array with an

array index outside the bounds for which the array was declared, then an error
will be detected at run time. The GEC compiler for CORAL 66, with which the
DISCUS O/S and applications programs were written, does not have this checking

and if an array bound is exceeded, then no indication of this is given except

for indeterminate program faults. However to help with protecting the global
objects DISCUS contains bounds checking on all its global arrays (and local
copies).

If we take PASCAL as example the following "program" should cause a run-time
fault (providing that the compiler has the appropriate run-time checks):

VAR a: ARRAY [0:10] OF integer;
VAR index: integer;
FOR index:= 0 TO 20 DO
BEGIN
a[index]:= index

END;

The feature is not a part of the definition of PASCAL but a function of the

compiler - the CORAL 66 that we use at present could have this feature. As can

readily be appreciated, this is very powerful for tracing faulty programs and

for preventing inadvertant overwriting of data. However, a penalty must be

paid for all this checking; more code and time. The amounts of extra code and
time vary but they can be quite substantial. If it were possible to do this
checking somewhere else, a considerable code saving could be achieved while
still retaining the principle of bound checking. It is possible to order the
compiler to produce code that does not include all these checks to increase
speed when the program is thought to be correct and not need these checks. But
it is impossible to say with any confidence when software is fault free.

However if this checking was in the hardware a considerable amount of time and
code could be saved.

The principle of "base-limit-access" checking in the hardware is by no means a
new one (cf. the "capability" structure in Plessey's System 250 computer) and
there are the "Memory Management Unit" devices produced by Zilog, Motorola
et al. The main problems of this approach is deciding where it should go and
how it should be used.

Before discussing the location and use of this facility, I think it is worth
reviewing exactly what we want it to check and do. The first job must be to
ensure that the current memory address being output to either local or global
store is correctly within certain limits (hence "base-limit"), and that the
operation about to be perpetrated on that address is valid (hence "access").

In order to provide a check it will be necessary to have registers that can be
pre-filled with the parameters of the impending operations. Next we need some

comparison logic to ensure that the address or action is within those limits
set in the registers. If this process occured in parallel to the operation
(i.e. the logic was in the Bus Supervisor Card) then the fault could only be

detected and not prevented. The operation must not happen if the access etc is
wrong. Because of this the checking must be done serially. However we would
pay the penalty of speed since there was yet another unit to go through before
reaching the destination. In the proposed P896 bus (27] it is intended that

there should be some form of parallel bus supervisor. This device would
monitor the operations on the bus and be able to take over/modify a bus cycle
if it felt it was necessary. This is both complicated to implement and
restricts the bus speed considerably.

For this reason I think it is essential that the logic goes in between the

master and the object of its access. If we assume that only the global store
is to be protected by this means, then the only place for it is in the path to
global store (on the Crate Bus Interface Card at present). Within DISCUS at

present this card will prevent any Read-Only accessed store being written to.
The source of the information is, however, the processor card (in the AAR),

and if a hardware bounds checking scheme were used, then that part of the AAR
would have to be on the Crate Bus Interface. This scheme would prevent any
illegal transaction to the global store from being made.

It would be essential that this mechanism only be accessible from the
operating system otherwise it would be possible to alter the access registers
from the users program, thus letting a user access global store illegally. As

can be appreciated there is a penalty from having this checking both in the
hardware and software. In the hardware it is estimated that a further 20
integrated circuits might be used on the Crate Interface Ca. ,o make a custom
MMU, and the commercial devices would be difficult to apply to DISCUS in its
present form. Also there would be a penalty of access time to the global
store, although this would probably make very little difference in terms of
overall system speed. In the operating system software, the registers would
have to be set (via I/O instructions) before every (or group of) global store

access(as). However the software time involved would be less than that
incurred to check the access validity entirely in the processor's code, as
indicated in the case of PASCAL above.
An assumption was made above of only having the checking in the global store.

4.6

The Crate Interface Card is able to check all transactions with other
processors and prevent a single local processor from corrupting another's data
area in global store. At present, DISCUS is able to do this only il its
operating system, provided that global store accesses are made by the
operating system and not the user program. If we now include the entire local
store as well as global store to be checked, a further difficulty arises as to
where this checking should be carried out. At first sight the most obvious
place would seem to be the processor. All transactions to store, both Local
and Global, can be checked before they leave the processor card. However, this
is all right if the processor is the only master module on that local bus. If,
as is used in DISCUS, there is another master card (i.e. the peripheral card)
that card would be able to corrupt local store unless it had some form of
register checking also.

From this, it could be thought that it would be best to place the registers
actually on the memory cards themselves. However, the disadvantage of this
would be resetting the registers to a new value for a different master module.
Some form of stackable registers would be needed, and the complication of this
would not be worth trying against the previous method.

If we were to use a Memory Management Unit we can spilt the store into a
number of segments (in commercial units these are usually from 256 bytes up to
64 Kbytes, with a total address space of up to 8 Mbytes). It is also possible
to use several MMUs to increase this figure. Each segment has associated with
it a register I will call the DESCRIPTOR register (in the Plessey System 250
computer these are equivalent to the CAPABILITY REGISTERS). This descriptor
register contains a BASE ADDRESS field, a LIMIT field and an ATTRIBUTE field.
For the observant I am using the ZILOG Z8010 as an example of a typical MMU.

Base/Limit Field. The MMU takes a logical address and transforms it into a
physical address that is required to access the memory. This process is called
RELOCATION. This means, in a system where the various modules of the entire
processor are not on a single card but on a backplane bus, that this bus will
be carrying local addresses if the MMUs are placed on the store card rather
than a CPU card. (This is considered in a little more detail below.) This
relocation should be entirely transparent to the applications programmer. Each
of the base address registers in the MMU associated with one of the segment
addresses via the TRANSLATION TABLE. The logical address is added to this base
address to form a complete physical address. Since the MMU usually divides the
memory into consecutive 256 byte blocks at smallest, the lowest 8 bits of the
address are common to both the logical and the physical address. The limit
register contains a value N that says that N+1 blocks of 256 bytes have been
allocated to that particular segment. If the processor tries to access out of
this limit, it will cause a violation error (see below).

Attribute Register. The attribute registers control the type of access to the
segment to which the Segment Description Register refers. The access
encompasses both DMA and CPU activity. Typically the register might consist of
the following -

i. READ ONLY. This prevents a write command from being made to the segment.
In the current version of DISCUS this would be equivalent to using the
WPMS line. Within DISCUS however, this attribute only refers to store on
the global bus.

ii. SYSTEM MODE. On most of the newer 16-bit microprocessors there are
priviledged instructions that can only be executed in the so called
SYSTEM mode (see section on MICROPROCESSORS FOR DISCUS). The equivalent
within DISCUS is the use of forbidden areas for the operating system and
global store (see below on DISCUS 1.5).

4.7

iii. CPU Inhibit. This flag allows only a DMA module, not the CPU, to access
a segment. This permits external peripherals etc, to have access through
the system in a protected fashion.

iv. Execute Only. This restricts access to the segment to only instruction
fetch cycles. Within DISCUS at the moment, it is possible to run programs
that are resident in the global store, but this is strongly not
recommended since unpredictable results may arise if the AAR is changed
as the program is being run. In the next DISCUS it is intended that this
will not be possible by using a very basic mechanism that cannot be
changed. The only place for the MMU would be on the memory card rather
than the gateway down to global store where the global protection
mechanism would be.

v. DNA Inhibit. This allows only the CPU to access that segment. The value
of this can be appreciated when it is realised that within a system there
will undoubtedly be intelligent peripheral cards under the applications
designers control. By using the access capability of this card, it would
be possible to corrupt any part of memory without this DMA inhibit. In
the new DISCUS system, some method of only going to areas preselected by
the operating system would be highly desirable.

vi. Direction and Warning. This checks for potential segment overflow and is
particularly useful for stack operations.

vii. Changed. This flag indicates that a particular segment has had a write
command. This is useful in checking whether an array has been written to.
Within DISCUS it would be used with the array objects. A function could
check on this flag to ensure the array had not been interfered with.

viii. Referenced. This is similar to the changed flag, but it refers to both
read and write.

All these facilities would be available and used by the operating system in
protecting the data and code from deliberate or accidental misuse by the
applications programmer. Generally the faults that are being guarded against
are software errors not hardware. Checks on the data such as parity are
considered separately below.

The MMU is accessed via protected/privileged instructions that are only
available in the system mode. When an applications program is run, it is done
in the normal mode. However, not all microprocessors have this facility, and
it would be necessary to place the MMU control registers in an address range
that cannot be accessed by the applications programmer, much as it is intended
in DISCUS 1.5. In order to use successfully this type of MMU, it is necessary
to make one or 2 assumptions about what the bus must carry. The primary
information, apart from Data/Address and basic read/write controls, must be
status/type of the command being executed. This encompasses such things as
Instruction Fetch cycles and stack operations. The latter is not so relevant
with many microprocessors since there is no definable stack "per se", only

another area of store accessed by one of the internal CPU registers.
Information such as memory refresh is not needed, since the DISCUS system is
intended to be totally asynchronous and each of the memory cards will have its
own independent refresh system. Also, the global store will not have a CPU to
generate these requests, although there will be some from the bus controller.
Having to have microprocessor internal operations available does however drive
us towards a single card local processor, with a component level bus for any
future machines.

4.5 BUS FAULT DETECTION

There are many faults in a system that can be avoided by good design and
operation of the bus. Up to now, there have been very few designs of bus that
have given any attention to this area. A great number of faults can and should
be trapped at the bus level and the two types are detailed below.

Handshaking. It is essential that all actions within a computer can be
acknowledged so that the device doing the controlling has some idea of the
success of its command. It is also essential to have some scheme as the
addressed slave device may not be ready and would need some method of causing
the master device to wait. However, the problem that occurs here is one of
time: how long an interval is deemed to elapse before a slave device is
considered to be absent or to have faulted. Within DISCUS, an arbitrary time
interval was chosen that was considered to be well in excess of what would
normally be acceptable from the various modules within DISCUS. The time
interval for local accesses is approximately 5000 times the normal access time
required. Since this is not required except in fault conditions, it was
thought to be acceptable.

All the commands on the DISCUS bus are handshaked and are:

1. DMA Commands
2. Global Store Requests
3. All I/O Memory Commands

These signals all have a single level of acknowledgment, but it might be
better to have several levels with one instruction. In other words, to take as
an example, a memory read instruction, the following could occur:

1. Master Issues the Address

2. Slave acknowledges valid address

3. Master Issues Memory Read Command

4. Slave acknowledges command

5. Slave gives back data

6. Master acknowledges data

The advantage of this method is that when a fault occurs in the system, it is
easier to trace from the above 3 levels that just the one level. However care
has to be taken in the protocols in case any extra time is taken on the bus to
carry out these actions.

When a bus fault does occur, it is up to a checking mechanism on each local

bus to detect this and act accordingly. The most convenient way of doing this
is by the use of a time-out. There is a device that monitors the bus and when
there has been no reply to a command for a specified time it causes some
remedial action to take place. Usually all it can do is signal to the

operating system that a fault has occurred, and tell it what type of command
was being done and where it happened. It must also give the handshake to
complete the protocols. I will return to this mechanism later when we look at
the Bus Supervisor Card.

4.9

Data Integrity. Any corruption of a single bit leads to the corruption of the
whole, and it is thus essential that the correct address or data arrives at
its destination. The simplest and most convenient way of achieving this is by
adding PARITY bits to the bus.method. It is a well tried method and does not
need any further discussion here except to say that for a system such as
DISCUS, it would probably only be necessary to have one parity for the address
and one for the data. The circuit requirements for implementing a single bit
parity scheme would probably amount to about 8 integrated circuits. This would
provide checking and generation.

It would be possible to use some form of error correcting code on each of the
address and data busses. This would enable recovery action to be carried out
directly by the address/data logic, a scheme which has its attractions since
it is distributing the recovery action throughout the system. However, the
mechanism must not just act without telling the appropriate monitoring
software that it has made some correction. This is because the fault might be
symptomatic of a larger problem that will need to be corrected. The main
disadvantage of this method is that of cost. Until large-scale integrated
circuits are produced that contain all the necessary logic, this method will
use too many integrated circuits and use up too much board space to make it
worthwhile.

There are other places in the system where parity checking etc, can be used
more conveniently. It is probably in a system such as DISCUS that more errors
will be produced by the memory devices used, among these it is probably the
RAM ics that will be at fault (especially the dynamic RAMs). As the geometry
of the individual cells in the RAMs gets smaller, so they are going to be more
and more susceptible to pattern sensitivity and nuclear effects such as alpha
particle emission by the substrate material. Because of this, it would be
desirable to include extra checking bits in the RAM array. In DISCUS it is
proposed only to use a single even parity bit for every 8 bits of RAM.

RAM is easier to parity check than ROM since the former is made up of
16K x 1 bit devices giving bytes stored in parallel across as many chips as
there are bits in the word and one addition of a single parity bit is like the
addition of another bit in the word. With ROM the devices currently available
are organised as byte parallel usually as nk x 8: in DISCUS, the standard
2k x 8 bits are used. Adding a parity bit for ROM would need the addition of
another complex ROM, and generating it each time a new ROM was produced would
be very time consuming and tedious. It is unlikely that much benefit could be
gained from having parity in the ROM since non-erasable ROMs rely on a
physical change in the device to store their information and are thus
resistant to such faults indicated above for RAM stores.

4.6 FAUI? DIAGNOSIS

Now that we have looked at some of the various methods of actually detecting
the fault when it has occured, it is necessary to consider the much more
complex area of diagnosing the fault, if possible in more detail than that
indicated by the fault detection circuitry. It may be necessary to invoke
active methods to carry out this analysis by having a separate processor
module on each local bus. Unlike fault detection, the isolation of faults must

necessarily involve the operating system. However, at present it is intended
only to discuss the hardware aspects.

The first thing to discuss is to what level should one be able to diagnose a
system. The object of the diagnosis is to replace the faulty unit (either
manually or under machine control) so that the entire system can resume
working at its normal capacity. To achieve this aim it is necessary to replace
a particular component part of the system. This part may be a single

4.10

electronic component or it may be the entire system. Both extremes are clearly
not practical in what we are considering, so it is necessary, as part of
deciding what recovery action is necessary in a system to discover what is the
most convenient size of module to replace. From this can be gauged the type
and amount of recovery. Ideally we try to give the diagnosis mechanism the
maximum amount of information regarding the fault. For a hardware fault we
need status registers that store the state of the machine when the fault

occured. The operating system is then able to inspect these at leisure to
make a suitable judgement on what it thinks happened, and thus what it should
do to try and get things correct again.

In order to look at the types of fault detection etc, I am going to use both
the present DISCUS and the proposed Mark 1.5 facilities as an example.

4.7 PRESENT RECOVERY IN DISCUS

Before we look at the various mechanisms for detecting faults, it is an
important principle to realise. If the system is designed inherently to

prevent abuse then the detection mechanisms can be correspondingly easier.
One important feature of DISCUS is the principle of overlaying the
applications code on the global store.

As we saw in section 3 it is impossible for any code that is in the top half
of local store to access directly the global store. The action of accessing
global store from the top half of local store causes the top half to vanish.
Thus the applications code that was running there effectively vanishes. We can
make use of this by putting the operating system in the lower half of global
store and the applications code in the top half. Thus the applications
programs have to go through the operating system in the lower half of store to
get at the various global objects. However it is still possible to corrupt
global store if a program written in the lower half and then it was run. The
way to stop this is to ensure that the applications code cannot access the
lower half of the local store, only the operating system can do this. As well
as this the system I/O ports for the AAR and the fault interrupts have to be
protected by similar means. I will return to this when we look at the
"ark 1.5 DISCUS.

he recovery aids are very simple because when DISCUS was first conceived, it
was impossible to tell what was going to be required on the final machine. Now
that experience has been gained on the types of problem that arise, a better
understanding of the recovery aids has been gained. Although not all the aids
that will be discussed are going to be put on the current DISCUS, it is hoped
to try out some of them on a Mark 1.5 to enhance the machine that has been
described. However a quick review of what is currently done on DISCUS before
continuing is necessary.

The only method that the hardware currently has of detecting a fault is by the
command acknowledge time-out expiring. This indicates that one of the 4 main
commands on the bus (MERD/, MEWR/, IORD/, and IOWR/) has not been
acknowledged. At the time of the error it is not known whether the slave being
addressed has faulted, or whether it is even present. In the latter case we
have the further complication of not knowing whether it was the calling
program in the master that has been corrupted and is issuing the wrong address
to non existent memory, or whether the store or I/O card has not been included
in the hardware (in the early stages this is quite a common occurrence). Also,
there may be a write to a write protected device, either from the write
protect in the AAR being set or by trying to write to ROM.

At present another complication is that it is not known which master is doing
the accessing; for instance, it could be the main local processor or the VDU

. ... u . . .I l -I l i

peripheral card. It is the Bus Supervisor Card that detects bus fail errors by
having a time-out on the command activity. Currently this card is passive and
is only able to carry out very primitive actions. These actions can be
summarised as:

i. It can ignore the failure completely, thus allowing the whole system to
freeze at the point of the fault. This allows a manual inspection of the

bus to be carried out. It also issues a fault signal to the local front
panel card to light the appropriate fault light. Of the three options I
have found this to be the least used.

ii. It can provide a default handshake as soon as the error has been
detected, and like i. it gives the fault light. This allows the system to
continue operation. In the initial stages I found this the one to use.

iii. As ii., but with a selectable interrupt to the processor so that a fault
routine may be entered if necessary. This interrupt is to one of the 8
interrupt levels on the DISCUS bus to the processor (although if the
processor itself has faulted, this action becomes a waste of time and
user has to provide assistance). At present this causes a simple
subroutine instruction "CALL address" to be given to the processor
forcing the processor to enter an interrupt routing. This means that the
pocessor saves the current instruction pointer onto the stack for an
eventual subroutine return. This operation is most important since the
address saved is the one at which the fault occurred. Although it may not
be the faulty address, since the operation that faulted might have been
an indirect memory operation or I/0 instruction. It is up to the
operating system to analyse the state of the register and the instruction
that was being acted upon at the fault time.

As may be appreciated this all gives very limited help to the operating system
for diagnosis. It does not at present even give the address that faulted only
the address of the instruction that caused the fault. It would be necessary to
analyse the instruction to see where the fault might be. It would be possible
to save all the registers within the cpu to help with this, but it would be
difficult to do. Thus the operating system can only register the fault to the
operator, throw away the present transaction, and wait for another
transaction. It does not give the operator any clue as to why the fault
occured or where it occured.

A further complication is the length of the default time-out. If made too
short there are occasions where a perfectly valid operation may take many
times the time-out - for instance, when loading or initialising the global
store. If made too long the system will noticeably pause when a fault occurs.
With the original system the default time-out was disabled so that the
processor paused indefinitely when the fault occured. This was not very
satisfactory, and the Mark 1.5 attempted to cure this.

What I have explained above are essentially hardware diagnostics - when a
store module goes wrong etc. In the present DISCUS the recovery actions are a
trifle brutal - throw away what we were doing and wait for a new stimulus.
This means that we nearly always get to a consistent state, but that we lose
one complete transaction. In the telephone exchange type of application this
may not matter since the user can always dial again.

We have a problem if the fault was permanent, rather than a single transient
one. A permanent fault will keep recurring and the system will keep failing.
Some form of counter to count the faults is needed. Only after a certain
number of faults will the operator be called.

4.12

There are basically two methods of alerting the operator. First we can have a

display device on every processor that the operating system can use to write
system messages to, (since functions can be duplicated every processor must
have a display). Second we could have a special centralised error reporting
function with only VDU in the system. Although having a central "control"
function might be desirable, we chose to have one display per processor.

4.8 DISCUS HARK 1.5

The Mark 1.5 is an attempt to put some of the ideas above into practice
without having to completely redesign the whole system. I will look at the
system in a little more detail to show how much was achieved towards recovery.
As we saw above there has to be some form of "serial" or "in-line" detection
of potential accessing faults. I showed that the master modules were probably
the best place to put these detection circuits. Since the Mark 1.5 is
basically a Mark 1 DISCUS with some new boards and a minimum of change at a
system level, some retreat from this is necessary. Only the processor card has
this detection circuit. The following is a list of the constraints on a final
Mark 1.5 system.

i. All other master modules besides the main local processor would be
constrained to access only a discrete part of store. At present in
DISCUS, the peripheral card is capable of addressing all of the Local
Store at locations fixed at a code level when the peripheral card

software was designed. With the new card these areas of store are defined
by the main system and can be dynamic. The peripheral card is supplied
with the address of these buffers. There is no check however on the
integrity of the peripheral card code. However, it is still unable to
access the global store.

ii. The operating system should be a fixed part of store. In DISCUS at

present, this is the first 16k of local memory. Even with it written in a
high level language, this should prove ample - currently the operating
system is about 10 kbytes written in CORAL 66.

iii. As it stands, the applications programs are all confined to the top half
of the local DISCUS store. This gives 32 kbytes of store. If this is not
considered enough, then perhaps the point of distributed software has
been missed and the user had better try an improved functional split of
the software.

iv. There are a restricted number of I/O ports available to the applications

programmer. These are ports OOH - OAFH, the others are reserved for
system use. I feel that this number is sufficient for most applications.

v. There should be no executable code in global store - only data. In the
early stages of development, the programs for each processor are loaded
via the global store from a disk-handler DISCUS processor, but they are
not executable from a local processor. At present this is not the case
with DISCUS, it is possible that a processor can run programs anywhere in
global store. A word of caution is necessary here; if the AAR is set in
error to a different value while running a global program, unpredictable
results will arise, and a multi-processor system like DISCUS is
complicated enough without introducing that sort or hazard.

4.13

The now system consists of three new cardss

i. 8085 Processor Card
ii. Z80 Peripheral Card (VDU eta)

iii. Intelligent Bus Supervisor Card

Only the first two are concerned with recovery so I will deal with them alone,
and only those parts which are concerned with recovery.

4.8.1 8085 Proessor Card

As its name suggests, the 8085 processor card uses the enhanced version of the
8080. This device removes a substantial amount of the external circuitry that
was needed to drive the 8080. As a result more circuitry can be fitted on the
card to provide the extra facilities. The 8085 can go much faster although at
present the system is only about 30% faster. The instruction set is identical,
except for the addition of two instructions to use the extra interrupt
facilities. This means that it runs the same object code that the CORAL-66
produces. The operating system will have to be changed to use the new
facilities, but the applications programs will remain the same. Only
regenerating the system will have to done.

I will briefly discuss each new facility and how it is intended to help the
system and the operating system in particular.

Timers. There are three counters on the 8085 card to provide the operating
system with an accurate real time clock. The basic pulse to each counter is
1 microsecond. Each counter can interrupt the cpu so that real time clocks and
watch dog timers could be used. All the software necessary to generate
software timing loops can be removed, only the interrupts for the real time
clocks are needed.

Acoesa restriction. As I have said elsewhere it would be desirable to check
each command leaving the processor card and ensure that it is a valid
operation. In the present system a complete capability structure is not
feasible without a vast amount of change and extra circuitry. However a basic
level of program protection has been added. A set of restrictions on how store
and I/O space is to be used has been produced.

i. The operating system shall always be resident in the bottom 16k of the
local store. The operating system shall be able to access anything
throughout DISCUS in both local and global store.

ii. The applications programs shall be in the upper half of the local store
(32k - 64k). They shall be unable to access anything in the lower 16k of
local store where the operating system is. They are also unable to tccess
directly global store since the top half of local store overlays the
global store. I/O ports between OBOH and OFFH are forbidden.

iii. Programs in the remaining area (16k - 32k) shall also be unable to access
store and I/O in a similar fashion to the applications programs.

To mum up the above, only the operating system is allowed to access the system
bits. This means that the applications programmer cannot access the global
store directly. As we saw above the present DISCUS can be defeated by the I
applications programmer writing a program in the lower half of global store
and then running this program to access the global store. The applications 5
programmer could in theory access the Auxiliary Address Register directly from

the top half of store, but it will not do him much good except crash the

,, Ili

system. Now both these situations are impossible.

If the applications program does try these accesses we have to do two things:
firstly we have to stop the access from taking place. This ensures that he
does not do anything harmful. It is a matter of hardware logic to achieve this
and is not available to the applications program.

Secondly we have to alert the operating system. The latter can then endeavour
to take some remedial action. The mechanism to alert the operating system must
be invisible to the applications program. For this reason the interrupt that
is used must be non-maskable, and is why the TRAP interrupt is used. Once a

fault has been detected there has to be some way that the operating system can
try to diagnose the fault. The easiest way is to have a status register on the
card that is updated every time a access fault occurs. (This means that only
the last fault is seen, although this is not a hardship). I have found that
only six bits are needed to give the operating system a fair chance.

The various access conditions detected by the status register are:

i. Memory write to illegal area
ii. Memory read to illegal area

iii. I/0 write to illegal area
iv. I/O read to illegal area

There are one or two more conditions that are held, but are not relevant to
the operating system. What the operating system does when a fault occurs is in
two parts. A warning message is given to operator, and then some remedial
action to try and recover the situation. A message is sent to the Bus
Supervisor Card which displays it on a small display. How this display is
arranged is explained in more detail below.

4.8.2 Bus Supervisor Card

The present Bus Supervisor Card is essential a passive "bus-sniffer". It
provides a way of looking at the bus via an umbilical cable. It provides the
bus termination, bus arbitration, and most importantly it checks for bus fail
timeouts. The new card does all these things but several more key activities.

i. It can read the bus when a time-out failure has occurred and produce some
form of message on the display.

ii. It can inhibit the time-out mechanism when required. For instance when
the main loader is working (see the Appendix on the loader [29)).

iii. It can increase the time-out so that accesses to global store can be
catered for.

iv. It can give a better indication to the operating system for diagnosis.

v. It can display messages from the local DISCUS processor.

vi. It provides the local normal reset to its DISCUS processor. The BOOT
local reset has been removed. The only BOOT reset is the overall one that
comes from the global store crate and resets the whole DISCUS
multiprocessor.

The display that is used is a simple 16 character alphanumeric display that is
mounted on a front panel close to the processor it serves. This display
removes the need for having a VDU on each processor for displaying error
messages - an expensive and bulky activity. The operating system sends all the

p.15

abort messages to the display.

These take the form:

"ABORT - xx

Where "xx" is the appropriate error number. When an access fault occurs, the
following type of message will be sent:

"SYSTEM TRAP - xx"

In this case "xx" is derived from the 8085 status register described above.
When a bus fail occurs the following type of message will be output:

"BFAIL aaa-xxxx"

Where "aaa" is the access that failed and "xxxx" is the address at which it
failed. For instance:

"BFAIL MRD-0012" memory read fail at 12H
or "BFAIL IWR- B2" 1/0 write to port OB2H

The only problem at the moment is to decide on how several fault indications
at once should be dealt with. Some form of store is needed to nest fault
messages. The display is controlled (as is the whole card) by a special
microprocessor. This is the Universal Peripheral Interface (UPI). This device
is treated by the local DISCUS processor as a pair of I/O ports that can be
addressed. It can inspect the DISCUS bus and control the various functions of
the Supervisor Card such as the timeouts. Because the UPI is addressed via
restricted access ports only the operating system can use it.

We have not fully discovered its possibilities (or hazards) since at the time
of writing only a prototype has been tried. However the results are very
promising, even though the operating system has not been fully changed. The
ability to output "comfort" messages to the operator without a VDU is a useful
one.

Although the entire system has not been fully run in all possible ways with
the new version of the operating system, I feel sufficient has been learnt to
go towards a completely new machine and what we might need. What I have
described above is probably the most realistic changes that can be made to
DISCUS without making it a mess of hardware cabling and add-on circuits, and
it is definitely not intended to add any further facilities or change anything
else to the present DISCUS.

4.9 MORAL

It is important to realise that what I have described above is only the
detection part of the recovery process. At present we are still experimenting
with recovery methods and hope to produce some i-'re detailed views later. It
is impossible to cover all the aspects of the software and hardware here so I
will give a short reminder of what we have discussed above. I will return to
some more of these points in the conclusion along with some of the software
problems in designing for recovery.

i. Recovery must be considered from the start, it is not some facility that
can be easily added on later.

ii. As much information as possible should be given to the recovery mechanism

by the fault detector. It is better to have too much than too little.

4.16

iii. The hardware protocols should be enough to do all the operations between

modules, but simple enough to deduce what has happened.

iv. At some stage an operator will have to come and sort out the mess; so

make sure enough information is given to him.

*

4.t7

5. MICROPROCESSORS FOR DISCUS

It is an important concept of DISCUS that it should use commonly obtainable
components. Nowhere is this more important than in the choice of the
microprocessor and all its associated systems. There are many reasons for
choosing the microprocessor and must take into account every aspect of the
final DISCUS system. Many of the more obvious criteria like the basic word
length of the microprocessor are not as important as the system criteria -

such as the choice of the development system.

THOUGHTS ON THE NEW MICROS. At the time of writing there is a new generation
of micros being proposed. These are the APX range of microprocessors produced
by INTEL. These are very sophisticated VLSI microprocessors with a range of
tightly coupled peripheral chips. For applications which can use the standard
development system with the manufacturer supplied software these micros will
have the power of a machine like the PDP-11/34. The processors have an
integral operation system with co-processors on a component level bus sharing
the specialised functions such a floating-point operations. Because of this it
will be increasingly difficult to adapt them to the DISCUS type of system
where research on different methods of hardware configuration are being tried.
What can be done with the micros will depend wholly on the software and
operating system supplied by the manufacturer. One might speculate that the
current range of micros such as the 68000, Z8000 and 8086 are the last devices
that can be used in such user specialised applications such as DISCUS. For
these reasons and that there has not been sufficient information to make a
realistic discussion on the APX range, we will restrict ourselves with the
present 16-bit machines (68000 etc).

SUPPORT CHIPS. Most microprocessors today are not produced in isolation:
rather they are surrounded by a range of specialised devices to carry out

functions that the microprocessor has not the room for (physically on the
die), or that it cannot do very efficiently. These devices range from the
simple I/O peripheral controller (for example the 8255 from Intel where the

number of pins is the restricting factor) to such devices as the various
floating point arithmetic chips and floppy disk controllers. Very often

specialised applications define which support chips should be used and thus
which microprocessor rather than the other way around. With the current DISCUS
a variety of support chips are used from a variety of manufacturers. All the
devices are interfaced to a standard component level/system level bus. If it
is required to make use of a specialised device the compiler, and thus the
operating system must be written in such a way so as to use this device most
efficiently or else some of the point of using it will be lost. This will then
make the software highly hardware dependent which may not be desirable if
different hardware configurations are being tried. Care must be taken in the
use of these devices so that one is not restricted at some future date.

5.1 HARDWARE CONSIDERATIONS

Not every microprocessor is suitable for selection as a candidate for
inclusion in an array of processors. In fact it is fair to say that nearly all
the microprocessors produced to date have to be made to work by having special
logic to cope with the various needs of the multiprocessor environment. The
exceptions to this rule include the FI00, Z8000, MC68000 and 8086. The latter
3 are recent additions and are able to cope with an extended address range
(more than 1 Mbyte) and include some of the more advanced features of
multiprocess working such as memory mapping and dynamically relocatable code.

5.1

There are several features that a microprocessor must possess, or be made to
possess, if it is to be used in DISCUS. These include:

i. Command acknowledge
ii. Suspend operation facility

iii. Indivisible store "test and set" commands

5.1.1 Command Acknowledge

It is essential in any asynchronous system that the processor or commanding
module is synchronised with the slave it is using. The most convenient way of
doing this is for the slave to provide an acknowledgement signal to indicate
to the master that the latter's command has been recognised at its
destination. This can give several advantages for the system:

i. The system can cope with a variety of different module speeds. There are

a variety of different store media presently in existence and it is
essential that they are able to delay the master, if it is to ensure that
valid data is returned.

ii. It is possible to include a very basic level of fault reporting by virtue
of the non-return of the acknowledge signal from the addressed module.
This can be caused in 2 ways. Firstly the module could have faulted and
be failing to give the response, or the program, due to a fault at either
applications or operating system level, could be addressing a non-
existant module. Both of these conditions should be detectable and
preferably separately identifiable.

In order to get the maximum benefit for satisfactorily detecting and isolating
possible errors at a bus level, it is necessary to go to a multi-level
handshake system. For instance, the address and the command issued by the
master can each have their own quite separate handshake lines. Thus any
particular command cycle of the master proceeds in a series of checkable
steps. The address is issued and if not acknowledged, then the module is
either not there or the address recognition mechanism has failed. Assuming the
master receives the correct acknowledge an appropriate read/write command can
be issued. If this is not acknowledged then the fault could be either failure
of the command mechanism or else a "write to read only store" type command. As
can be seen this dual-handshake mechanism can provide immediately an enhanced
capability for first level fault detection. Although probably not desirable
for engineering reasons, it would be possible to further extend the number of
acknowledge lines to each different type of command (read, write, read-modify-
write etc) to give even more detail at this level of faults.

5.1.2 Suspend Operation Facility

It is common practice, even on simple multiprocessor systems with separate
local store, to provide for direct memory access (DMA) facilities. This allows
for several master modules to co-exist on the same bus accessing common local
slaves. There are 2 classes of control for this.

i. Each master claims time on the bus for the common resources on an equal
basis including the primary control processor. This impliqs that there
must be an overhead of time, albeit a small one, in the instruction cycle
of each processor. Generally there must be a separate bus controller
providing either asynchronous and synchronous control of the bus
utilisation requests. An example of this bus is the INTEL Multibus, as
used in the MDS-800 minicomputer.

5.2

ii. If the DMA requests are few, then it is possible to allow the master
processor to always assume that it has control of the bus. In order that
the processor can be suspended, some form of HOLD facility must be
provided. The mechanism of this is very straight forward. When the HOLD
command is issued to the processor, it completes its current instruction
cycle and then instead of issuing the new program instructions address,
goes into an indefinite wait state. In addition the address, data and
command lines are released to a high impedance state thus allowing the
requesting potential master module to take control of the bus. In order
for this to work properly, there must be an acknowledge to the HOLD,
which is issued from the processor to confirm that it has suspended
normal operation and has released the bus. This facility could be
implemented at either microprocessor or board level within the system.

As well as a HOLD facility there must be a mechanism for preventing the
suspension during special instructions or sequences of instruction. This
occurs during test and set instructions.

5.1.3 Indivisible Store Commands

There are occasions in multi-processor working when certain areas of common
store are accessed by a processor with that processor knowing that it has the

undivided control of that store. This is used almost exclusively to provide
semaphores/flags for the software control of data stores or message stores. To

explain the necessity of this facility consider the following. If there is a
data area, Fig 16, whose total contents must be kept consistent to one another
(or to put it more colloquially, when one entry is changed all the entries
have to be changed) it is vitally necessary that the reading processor (#2)
does not read the data while the other processor (P1) is still writing into it
since processor 2 will be reading invalid/inconsistent information.

00 BUSY ACCESS PROC I --j.EAD TE
(-I) FREE FLAG

4 4

PROC 2 .. ED .. WRIE
DATA i 4

FIG 16. Shared Store Contention

5.3

Using the bus activity diagram (Fig 16) it is possible to see how this state

can arise.

i. Processor 1 reads the flag and finds it to be -1 (free).

ii. Processor 2 also reads and finds the data area free.

iii. One instruction later, Processor 1, thinking it now has the undivided
attention of the common data writes the busy flag, and then proceeds to
alter the entries.

iv. Processor 2 also having read that the data is free, starts to read, not
realising that it has not complete control of the data.

v. From this point, chaos can quickly become evident. However, there is a
danger that because of only slight discrepancies in the recovered data,

the system is unable to recognise that a fault has occurred, until some
time has passed and suitable corrective or recovery measures become
virtually impossible to carry out successfully.

When 3 or more processors are involved in addressing the data area, the
possibilities of disaster become legion. It is worth noting here that the use
of simple busy/free flag is not completely suitable for more than 2
processors, and it is necessary to qualify the flag with, say, a unique
processor identity to denote who has the store. The mechanism of how this is

achieved in DISCUS is explained more fully in the description of the operating
system [8]. In order to stop this type of error occurring, there must be a
mechanism to allow a processor to make indivisible operations on the store.

There are 2 basic ways of achieving this:

i. Test and Set Operations (Read-Modify-Write). There is a special
instruction that keeps the address bus valid through a number of separate
read write control cycles. This means that there must be a unique
instruction called "Test and Set" that can be used so that the flag
read/writes are not separated by an extraneous instruction to fetch, thus
losing the continued valid flag address. By having the address valid and
separate commands during this period means that there must be 2 levels of
handshake to cater for the address and commands.

A typical operation would be as follows:

Buffer Free Buffer Busy
Flag Acc Flag Acc

Start -1 x 0 x
Read -1 -1 or 0 0
Increment -1 0 0 1
Write 0 0 1 1

Free = -1 Busy = anything else

In the case where the buffer is free, the processor has booked the store
during the indivisible part and is able to see afterwards whether it has
got access at its leisure knowing that if it has control it has
automatically booked it, but if it has not got control the store is
marked as busy. The only problem here is that after many processors have
been trying to access, the busy flag is considerably more than zero, and
a real danger in 8 bit micros is that byte overflow occurs and the busy
flag becomes zero again, thus invalidating the mechanism. However,

software protection can be included to overcome this [8]. It is necessary
when releasing the buffer therefore that decrement store is not used and
that -1 is written in directly to clear the flag. At the time of writing,
only 2 microprocessors are known to have the facility of
read/modify/write: the Ferranti F-100 and the Motorola 68000, both 16
bit machines.

ii. Separate Memory Local Command. Where a special read/modify/write command
is unavailable, it is necessary to generate a separate bus command or
method of holding a common store address valid for more than one
instruction. It has been usual up to now to employ the former method. The
Intel 8086 microprocessor has a separate command "LOCK" which holds a
memory locked bus line true for one whole instruction cycle (usually
increment memory). The command is invoked by using an instruction prefix
in the assembly code thus:

LOCK INR M

DISCUS uses a similar method, but the Memory Locked Line is generated

from a special on-card input port line, thus allowing several
instructions to be carried out on locked store.

The danger with this system is when the locked line gets stuck during a
fault, either in hardware or software, it prevents any other processor
from accessing all or part of store (see below on store partitioning).

5.1.4 Other criterea

There are several other considerations in the hardware that we must consider
when choosing a microprocessor, and I will look at these briefly below.

WORD LENGTH. At present there are really only two choices for this: 8-bits or
16-bits. Within a machine like DISCUS there is no need for any floating point
arithmetic as standard so the value of a long word for precision is
irrelevant. The only benefit for DISCUS would be an increase in bandwidth when
moving data throughout the system. The word length should not be a significant
reason for the choice of a microprocessor - it should only be the final
consideration when two microprocessors of similar standard, yet differing Vord
lengths, are being considered.

PROCESSOR SPEED. Like the word length the speed is a desirable feature, not a
necessary one. Most microprocessors today have a basic instruction cycle of
about 1 microsecond or less with the shortest being about 500 nanoseconds.
This should prove adequate for most DISCUS applications.

ADDRESS RANGE. It has been found in the current applications of DISCUS (a
small communications switch) that the standard 64k addressing range is

adequate for local store. The amount of global store is not nearly so critical
at 7 blocks of 32k. In order to test the handling of large data-bases within
DISCUS I wrote a multi-user "fantasy adventure" game (28] which used nearly
all the global store but I feel this type of application is very much the
exception. (In partial defence of this seemingly trivial application, the
program which is by no means trivial to write, identified several faults in
the system generator and operating system that would have otherwise been
undetected.) Future applications may use large data bases - especially in
areas of network emulation where individual network nodes are being emulated

by individual DISCUS processors. It is however an arguable point that

5.5

functions should always use small amounts of local store when mapped onto
DISCUS, bearing in mind the "brain sized" package argument for the software.
One of the advantages of the present DISCUS addressing scheme is its inherent
protection of the global store from the applications programs by using the
overlay method. That is where the global store blocks are overlaid with the
top half of the local DISCUS store (the top 32k) where the applications
programs are placed. Thus these programs cannot access global store directly
either accidentally or deliberately. The 16-bit micros have a linear memory
rather than this overlay system, thus any natural protection afforded by the
DISCUS overlay system is lost. It would be tiresome to arrange for the newer

microprocessors to have a similar arrangement to the present DISCUS. However
there are a variety of special chips that can provide a measure of protection

to the store (see elsewhere on the Memory Management Chip produced by the
Zilog Corporation - Z8010). The new DISCUS operating system would have to be
rewritten quite drastically to cope with this different approach. Until it is
investigated more fully it is impossible to see all the implications of
changing to a fully linear store with some form of memory management device.

5.2 VOICH MICROPROCESSOR?

I feel that the choice of the microprocessor for a Mark 2 DISCUS is between
two devices - the Motorola 68000 and the ZILOG Z8000. Before looking at the
various capabilities of each of these, I will look briefly at the others. It
is certain that I am going to annoy some sacred cows on the way, but I offer
no apologies for so doing, the discussion is biased and ultimately represents
my personal choice, based on much experience.

5.2.1 INTEL 8086

This was the third 16-bit microprocessor to be produced. It was the first of
the third generation devices to arrive however and is perhaps the strongest of
the runners up to the new DISCUS micro. It is backed by the considerable
expertise of INTEL, who offer a very comprehensive range of support chips for
it. INTEL have produced a micro that is aimed primarily at upgrading the

8080/8085 family that is used in DISCUS at present. It is able to use all the
8080 type peripheral chips with little trouble. The internal architecture
reflects the compatibility with the 8080, but because of this it suffers from

many drawbacks in the use of the internal registers. For instance, it is not
very symmetrical - it is impossible to use any register as the stack pointer
or program counter. Otherwise the instruction set is fairly comprehensive and
allows a variety of data manipulations and string handling. One of its biggest
drawbacks, and the reason I have not considered it, is its lack of reserved or
priviledged instructions. As I have said elsewhere, it is essential for a
secure machine that the applications programmer be kept away from the system.
A good way of doing this is by reserved instructions. The 8086 will access up
to 1 Mbyte of store and 16 kbytes of I/O ports. There is a segmenting scheme
that uses four base registers. These provide for data, stack and code segments
with an extra segment. There are registers for indexing in string operations.
The 8086 relies on special registers rather than general purpose ones which I
think is a disadvantage.

The 8086 has CORAL, PASCAL and PLM-86 for it. At the time of iMriting, the
latter two are supplied by Intel, and the former by two British companies. As
in most of its other products Intel's software is very good, and a minimum of
trouble could be expected from using the device. However it is limited by its
poor architecture and not having priviledged instructions.

5.6

5.2.2 TEXAS 9900

This device is relatively old and slow. Texas were the second to produce a 16
bit micro. It can only address 64 kbytes of memory and has relatively poor
support with peripheral chips compared to the other 16 bits micros. It has one
big advantage over the others by having all its registers in RAM. Thus it is
easy to change context by merely changing a pointer - an advantage in
processing interrupts etc. It is sufficiently cruder than the others for me to
discard it out of hand with no further comment.

5.2.3 NATIONAL SEMICONDUCTOR 16000 Series

I must confess that I know very little about this micro. It can address 16
Mbytes with provision for virtual memory operation (it says in the sales
literature). There are 8 32 bit registers for general use. It has
supervisor/user modes and separate stack pointers for this. The instruction
set is comprehensive and supports several operation modes. These include
"memory relative" and "scaled indexed". The former provides two levels of
indirection on the operand. The latter provides the facility to index an
operand and can be combined with all the other addressing modes. It is
particularly useful for "RECORD" structures in high level languages. I do not
know what languages National intend to support, but I am sure there will ones
like PASCAL. The development facilities are somewhat unknown, and I intend to
ignore the 16000 series because of insufficient information.

5.2.4 FERRANTI F100

This was the first 16 bit micro to be produced. It is still the only full
military specification micro in production. It is slow compared to the other
devices and tends to be used in military applications, with the result that
very few reviews of 16 bit microprocessors mention it. It can only address 32k
bytes and has few internal registers. The range of support devices is small.
There is a peripheral chip that can be configured for a variety of tasks from
bus buffering to managing multiprocessor busses. It has CORAL as its high
level language. The development system provide for the usual facilities with
disk storage, assembler and compiler. Again, like the 9900, it is now
sufficently out of date for me to dismiss it from the discussion.

As a final comment on the above it is impossible to be wholly unbiased,
ultimately the choice is personal preference and what you feel happy using
(and understanding). The choice is based on experience and what you think will
do the job in the best way. Having narrowed the choice to two devices it would
be better to look at the remaining devices in a little more detail. I
apologise in advance if the following looks like the manufacturers' data
sheets, but it is unavoidable.

5.2.5 MOTOROLA 68000

Address range. The 68000 can address 16 Mbyte by itself, and 64 Mbytes with
external support. It does not use I/O space as such, everything is memory
mapped, but with 16 Mbytes of direct space available it does not really
matter.

Internal registers. There are 18 32-bit registers. Seven are address
registers, eight are data registers, with the remaining being stack registers
and program counters. The data registers can be used as bytes, words or long
words. The address registers do not support byte operands. The instructions
that move the registers allow practically all types of moving and loading

'4 5.7

between the registers and memory. There are an adequate number of registers

for providing virtual program counters, and virtual stack pointers for
languages such as PASCAL.

Addressing modes. There are 11 addressing modes providing virtually all the
access types that might be required.

Data Types. For a DISCUS like machine the full range of data types is not

generally needed. BCD arithmetic has never been used on the present DISCUS,
these specialised facilities in the assembly language are a little difficult
to make use of in the compilers. However the 68000 can support a number of
types -

Bits - fairly useful when controlling external systems.

2-digit BCD
8, 16 or 32 logicals, signed and unsigned integers

Procedure Call Support. When a high level language is considered this area is
important. How such things as recursive routines are implemented on the
machine can make a considerable difference to the size and complexity of the

final code. The 68000 has the following instruction types to do procedure
calls -

Simple procedure calls with stack

Save/restore registers on stack
Link/unlink stack
Call, return, load and push effective address operations
Move instructions combined with auto incr/decr addressing modes

These are fairly normal microprocessor/computer instructions. However there is

one pair that is worth looking at - LINK and UNLINK. These two allow very easy
manipulation of what is known as the "environment" or sometimes the "stack
frame" in high languages. When a procedure is entered a certain amount of
store is needed for the local variables. If these variables are assigned to
absolute locations in store when the program is compiled it will prevent the
procedure from calling itself. This is know as recursion and is most
important. The reason is that the storage locations that are fixed will only
contain the last level of call. When the procedure returns to itself these
locations will no longer contain the variables in the first level.

For this reason for a procedure to be recursive it must have a separate local
data area for each call of the procedure. The most convenient way of doing
this is to grab some store from the stack. This stack may not necessarily be
the same stack as is used for storing the return addresses. Each time the
procedure is called a pointer is given to the procedure that defines the base
of an area of store that is used by the procedure. Variables within the
procedure are addressed as offsets within this area from the given base. How
this pointer is allocated is immaterial in this case. When the procedure
returns the old pointer must be restored to the calling procedure, so that the
previous variables are available.

In order that this can be done an amount of stack and pointer shuffling is
carried out. On most microprocessors this involves several instructions. With
the 68000 there are two instructions that enable these operatio4s to carried
out with only one instruction for procedure calling and one for returning.

', 5.8

The first is the link stack instructions. The instruction

LINK An,displacement

will allocate an area of store for the procedure call of size "displacement"
and adjust the frame pointer in address register "An" and the system stack
pointer accordingly. In algebraic or "RTL" notation this action is -

[ap] := An
sp : sp - 2
An := sp
sp := sp + displacement

All local variables are based on the new value of the frame pointer in

register An.

The unlink instruction is even simpler. The instruction

UNLK An

will reclaim the data area and restore the old frame pointer. This action is -

sp := An
sp :: sp + 2

An :: [sp]

This is one of the most useful features of the 68000, and one that is not done

on the Z8000.

System/Normal working. The 68000 has two working states - normal and
supervisor. The supervisor mode handles all the exception processing such as

bus failures and divide by zero. There are some instructions that can only be
used in the supervisor state.

STOP - of dubious use
RESET - useful for external devices, or under e-.ror conditions
RTE (Return from exception)
MOVE to SR (Move to status register)
AND (word) immediate to SR
EOR (word) immediate to SR
OR (word) immediate to SR
MOVE USP (Move to/from user stack pointer)

The supervisor state is used for the handling of exceptions. Exceptions are

situations that require processing that is not in the normal course of the

program. The 68000 has the following types of exceptions -

Reset
Bus errors
Address errors
Trace

Interrupts
Illegal instructions (i.e. non existant or unimplemented ones)
Priviledged instructions in normal mode

TRAP, TRAPV and CHK (check against bounds) instructions
Divide by zero

I do not intend to discuss any of these in great detail, the Motorola data

book should be consulted for this. However as a general point the "non-normal"
state is the supervisor state, rather than just a system state. Being in the

5.9

supervisor state usually implies that something has gone wrong. It is not a
state that an operating system can use as its normal state.

String Handling primitives. String primitives are commands that allow simple
operations to be carried out on character strings. For instance - compare two
strings in given buffers. The searching will stop either when a difference is
found or the end of buffer is reached, usually detected by a register being
preset the length of the string and then decremented. The flags then reflect
the outcome of the operation. Another use is in string processing languages
such as LISP, but DISCUS is unlikely to make use of this. The 68000 has no
string primitives. However if a high level language is being used, it will
require a very clever one to detect when these primitives could be used. In
normal use they will be probably be only used when assembly code programs are
being written. I do not consider their presence or otherwise as very
noteworthy when trying to decide which micro to use.

Arithmetic error traps. In the 68000 these detect the conditions overflow and
divide by zero. If arithmetic is being used then these are useful, but not
essential.

External Support Devices. The 68000 will be able to support the following
types (and I stress that at the time of writing with some of them it is only
"will").

Direct Memory Accessing. Within DISCUS this is not terribly important as
a special scheme is used. Also by the nature of having one processor to
one function the only place that DMA could be used with the 68000 devices
is on a local processor card.

Serial Interfaces. VDU type interfaces are very important. If on the new
DISCUS the processor is made on one card containing the micro and all the
interfaces, it is possible to use a component level bus. This allows
68000 compatible chips to be used properly. The 68000 will support V24
type, HDLC and IEEE 488 type protocols. Of these the latter will be least
used in DISCUS unless for communication to external peripherals.

Memory Management Units. These are very important for the next DISCUS as
has been explained elsewhere. The 68000 MMU will have 32 variable sized
segments for each MMU .Each segment will have a "capability" register
associated with it to provide base/limit access and write protection of
segments. Although the data is somewhat sketchy so far it unlikely to be
too different to the Zilog MMU already described above.

Multi-processor facilities. This requires the ability to "lock" store somehow
to enable semaphores to be safely set without interruption for other masters.
As we saw above this is most important for multiprocessing. The 68000 has the
indivisible test and set instruction

TAS <effective address>

TAS uses the read/modify/write instruction cycle of the 68000 and is inherent
in the hardware.

5.10

Development Facilities. Motorola provide development facilities on the
following machines -

M6800 EXORciser Development System
M6809 EXORciser Development System
IBM 370 Systems
PDP-11

There are simulators and assemblers on all the machines. The simulator on the
EXORciser machines include hardware emulation. Motorola intend to support
several high level languages for the 68000 include PASCAL, FORTRAN and PLM (a
version of PL/1). Probably BASIC will also be provided. It is inconceivable
that other software manufacturers will not implement other languages on the
68000. Prime candidates for this will be APL, ALGOL-68, COBOL and ADA.

Miscellanea. Other points about the 68000 that are worth noting are in no
particular order of importance:

i. It has non-multiplexed data and address lines. Consequently it must use a
large i.c. package (64 pins). The trend on modern busses is now towards
multiplexed data lines, so that there would have to be some external
conversion circuitry. This might not be as bad as it seems since buffer
would have to be supplied and these two functions could undoubtably be
combined.

ii. Single shot. This is done by forcing an exception, which allows a
debugging/monitor program to monitor the execution of the program under
test. The facility is turned on and off by a flag in the flag register.
It would be possible to only trace through a specified portion of the
code. Many extol the virtues of having single shot, but I can see no
redeeming feature if a high level language is to be used. A proper
approach to debugging at that level is necessary. Having to single shot
through a compiled version of the original HLL seems to be tedious to the
extreme. Worse than that it might encourage people to correct their
programs by patching the machine code - this is vile. The next DISCUS
will not even contemplate using single shot. It is worth noting also that
the present DISCUS was developed entirely without using single shot that
I provided for the local 8080 cpu card. In fact I removed it from the
8085 Mark 1.5 processor card. I am sure I will be accused of missing the
point about this entirely - so be it, my opinion still stands.

iii. There are sufficient status lines output to allow the external circuitry
to track the internal operation of the 68000.

Generally the 68000 is a good device, which is probably the fastest of the 16
bit machines. It has a good architecture for compiler generated code, and a
reasonably compact one for assembly code programming. The range of support
chips should be good. The documentation is very comprehensive also.

5.11

5.2.6 ZILOG Z8000

Address range. The Z8000 can address 24 Mbyte of user space and 24 Mbyte of
system space by itself. It can also have 16 Mbyte for each Z8010 Memory
Management Unit. In parallel with this there are 65 kbytes of I/O address
space. Zilog support two versions of the Z8000: the Z8001 which has the full
addressing range using segment bits in a 48 pin package, and the Z8002 in a 40
pin which is just 64 kbytes without the segment bits.

Internal registers. There are 15 general purpose 16 bit registers. These can
configured as 8, 16, 32 or 64 bit registers. Like the 68000 the load
instructions allow most types of movements between registers and memory,
although I feel they are not quite as "symmetrical" as the 68000. Also like
the 68000 there are an adequate number of registers for providing virtual
program counters, and virtual stack pointers. There are two stack pointers in
registers 14/15 that provide for the system and the user. Only register 0 is
special in the instructions and it cannot be used in all accessing modes - not
very convenient.

Addressing modes. There are 10 addressing modes which like the 68000
providing virtually all the access types that might be required.

Data Types. The Z8000 can support a number of types -

Bits
2-digit BCD
8 or 16 logicals
8, 16 or 32 signed integers
byte strings
word strings

Again 2 digit BCD is virtually useless, although bits are useful. The byte and
word string instructions are of dubious value since it would take a very
clever compiler to use them effectively.

Procedure Call Support. The Z8000 has the following instruction types to do
procedure calls -

Simple procedure calls with stack
Save/restore registers on stack
Call, return, load and push effective address operations
Push and pop registers
System calls

Compared with the 68000 these are not quite so comprehensive. The one key
omission is an equivalent to LINK and UNLINK. While these can undoubtably be
done from two or three others instructions, it is a pity that it does not have
them. The System Call makes up for this lack more than adequately in my
opinion for a DISCUS type machine, and we will have a look at this below.

5.12

System/Normal Working. The Z8000 has two working states - normal and system.
The system mode handles all the exception processing such as interrupts and
segmentation traps from the MMU. The system state has a large number of
reserved instructions that can only be run when in system mode. These
instructions are -

HALT - again not terribly useful
Interrupt processing
All input/output commands
Load control register
Load program status
Multi-processor instructions

As I indicated when looking at the 68000 the system state in the Z8000 is a
little different from the 68000. Not only does it provide for the exception
processing, but it also provides a way of running priviledged instructions.
These instructions can be used by an operating system to control accesses by
the applications program which runs in normal mode. Any attempt to overcome
this mechanism by the user program will result in a exception. The Z8000 has
the following types of exceptions -

Interrupts
Illegal instructions (i.e. non-existant or non-implemented ones)
System instructions in normal mode
Segment traps

Again I do not intend to discuss the above exceptions in great detail, the

Zilog data book should be consulted for this. There exists one instruction
that is most important for implementing system calls from the user program
that must be looked at. There has to be a method that the latter can use to

enter system mode. At first sight this seems to require the user to have
control over the system/normal flag, which of course violates the point of the
system mode. Also the applications program cannot write or call the system
area without a violation. A simple call to the operating system procedure will
only run the that procedure, but in the normal mode. This will cause a
violation the first time a system instruction is done. There is an instruction
system call-

SC n

This will call the system procedure n and automatically go into system mode.
The number n is a vector to the operating system procedure needed. When the

instruction is run the number n is placed on the stack and is available to the
operating system. The SC instruction always vectors to the same place
predefined in the program status area at compile time. The initial system
procedure then extracts n from the stack and then jumps to the appropriate
operating system program.

String Handling primitives. The Z8000 has a rich set of string primitives.
However as we saw before if a high level language is being used, these are
unnecessary for most DISCUS applications, so I will ignore them.

. Arithmetic error traps. There are no arithmetic error traps in the Z8000.

External Support Devices. The Z8000 can support the following types:

Direct Memory Accessing. There is a fairly standard DMA unit.

Serial Interfaces. The Z8000 has a combined V24 type and SDLC/HDLC type
interface. It has NRZ/RZ and FM data encoding so it is about as
comprehensive as might be necessary.

5.13

Memory Management Units. Having discussed this device in great detail

elsewhere I refer you to that section above. For any who know this device
I have already discussed it in all but name in the section on recovery so
little more needs to be said here.

FIFO Interface Unit. This unit is one of the most useful that Zilog
produce. It is a method of joining two asynchronous data streams. It
provides all the handshaking necessary to ensure correct operation of
each system. It is 128 bytes deep and eight bits wide. It is possible to
cascade and parallel the devices to increase the width and depth of the
FIFO. The FIFO is very important in a DISCUS like system that relies on
being totally asynchronous.

Error checking devices. There is a "Burst error processor" that can
provide error detection and correction for any data stream. It can work

up to 20 Mbits effective data rate. A variety of polynomials and

correction methods are supported. If DISCUS is to be concerned with
integrity of data these devices will be essential to protect data on the
transfers in the channels and to and from global objects. The new 64k RAm
chips will require some from of error correction locally also.

Multi-processor facilities. The Z8000 does not have instruction "test and
set" like the 68000 "TAS". Instead there are two pins on the device - multi-
micro in and multi-micro out. These pins can be manipulated by four system
level instructions -

MBIT - Test multi-micro bit input
MREQ - Multi-micro request
MRES - Multi-micro reset
MSET - Multi-micro set

The multi-micro pins are daisy chained from one potential master to another
giving a geographical type precedence. In small multi systems or ZILOG
"specials" this is fine and all the above instructions are used to provide the
basis for indivisible instructions. It has the advantage that any instruction
can be made indivisible - sometimes very useful. In the DISCUS like machine
the multi-micro output pin can be used as a Lock indicator as the present
DISCUS system uses. It can be used to generate an externally done "read-
modify-write" memory cycle. The instructions MRES and MSET can be used at
ainimum to control this facility. However with a little extra circuitry the
daisy chain mechanism could be converted to a parallel scheme.

Development Facilities. Zilog provide development facilities on the
following machines -

PDS 8000/20A Z8000 Development System
PDP 11/44, 11/45 and 11/70
ZLAB 8000

There are simulators and assemblers on all the machines. The development
facilities for the DEC PDP series are worth noting. These are all written for
the UNIX system. In fact since they are written in the C language they should

*. run on any UNIX system.

The ZLAB 8000 is Zilog's new development system which supports up to 16 users
on the UNIX system. It compiles several high level languages: PASCAL, C,
PLZ/SYS. No doubt languages such as FORTRAN and BASIC will also be provided.
The facilities provided by UNIX such as language parsers and lexical analysers
would be well worth considering for DISCUS if special pre-processing software
has to be written. The extension of CORAL for the present DISCUS was a major
part of the system generator.

',i 5.1k

5.3 WHICH TO CHOOSE?

As a straight choice of micro the Z8000 is not as fast as the 68000, and the
latter also as a more structured instruction set and internal architecture. If
we were choosing a microprocessor for a high performance single processor
system it would be the 68000. However we are not choosing one for this:
facilities for data integrity, as we have seen everywhere in this report, are
the prime consideration. The Z8000 is better for this type of operation.

Ultimately it is a personal choice that is coloured by experience. Experience
with the manufacturer, experience with previous multi-processors, and
experience with the languages that are offered. I have said elsewhere that the
internal architecture and speed can be low priority reasons for choosing a
microprocessor. The software, the development systems, the external chips, and
those special features that are needed for the application in mind, are the
prime considerations. It is possible that a new device will appear, or a new
facet of the above two, that will cause me to review the choice - time will
tell: but for the moment the Z8000 seems to fulfil our requirements best.

5.15

6. BUSSES FOR DISCUS

The bus is one of the most important items in DISCUS. If the processors are
fragmented over several cards it will be used to carry all the data for both
the local processor and the global store. Even if the system is made of truly
single board processors it will carry all the global data. The present DISCUS
uses a bus that, in all honesty, did not have much thought in the design, it
just grew. I intend to look at what DISCUS might need now and what is
available for it.

First, I think that it is relevant to ask the question - what information
should go on the bus? This may seem like a strange question, but there are
several types (or levels) of bus that exist within a computer system. I can
summarise these levels as:

i. System level bus
ii. Backplane bus

iii. Component level bus
iv. Serial bus (V24, RS232 etc)

The Component Level Bus is the simplest to consider so I will deal with first.
This should always be confined to a single card and should never be taken off
that card. It connects the various devices on the card together and thus is
processor or device (such as memory) dependent. The length of the bus is
usually very short making line termination unnecessary. Except when going off
card, buffering is usually unnecessary except when extra drive is needed for
going from MOS to TTL. In many bus configurations today, it is considered that
this component level bus will connect the basic elements of each processor
together on one card: for example on Intel's SBC range of computer. By its
very nature each processor card that has a different micro-processor on it
will have a different component level bus on it. For this reason we need not
concern ourselves with standards for this type.

The difference between the Backplane Bus and the System Bus is more difficult.
Some people consider that a system bus should not carry instructions and that
it should be totally asynchronous. Only data to and from some global store, or
between processors should be carried on it. If each processor in an array was
totally self contained then this would be feasible. However the processor
might be split over several cards. It would desirable that this bus that
contains the instruction stream is the same as the global bus. Thus the
Backplane Bus would be identical to the System Bus as it is in the present
DISCUS.

For this reason it is not intended that any distinction be made between them.
The backplane/system bus is the only one that we are considering: the
component level bus will be different for each card and it is impossible to
set any form of standard.

When DISCUS was first conceived there were really no standard microprocessor
busses that we could use. The only candidate was produced by INTEL: The Intel
MULTIBUS [30]. However this bus was unsuitable for what we wished to do and
it is worth looking at it briefly to see why.

The MULTIBUS bus was originally designed by the INTEL Corporation for use in
their MDS-800 range of microprocessor development system. It has since become
a standard used by INTEL in their SBC range of single board computers and by
others manufacturers supplying boards of that range. It is now such a popular
industry standard that the IEEE has produced a standard specification (IEEE
796). The DISCUS loader uses an MDS system designed around the bus with a
special interface card from the Multibus to the DISCUS global store.

6.1

The bus can support a variety of modules that can transfer data at up to

10 MHz rate. There are a set of protocols that provide for both daisy chain
and parallel arbitration for Master/Slave working on the bus. The bus allows
several masters to be resident on the bus for multiprocessor working.

The bus was originally designed for the 8080 microprocessor and the choice of
control signals reflects this. Undoubtedly the MULTIBUS may be suitable for
the INTEL micros but it is doubtful whether others (Z8000 and 68000) could
easily use the bus - I stress the word "easily". There is a large amount of
redundancy in the control signals with separate signals for memory read/write
and input-output read/write. The bus arbitration is synchronous with a bus
clock providing the necessary reference. There are 16 data lines and 20

address lines (with the future possibility of 24). There is no form of error
checking on these lines. Like the S100 bus there are 8 interrupt lines working
on a one out of eight basis which could be reduced to 4 lines.

The bus is accessed by 2 dissimilar direct connectors, one of 86-way on a

0.156" pitch and a second of 60-way at 0.1" pitch. At the time I wrote this
the latter has no formal definition and forms no part of the specification.
This should not be bussed on the backplane so that it can be used by various
manufacturers for special custom connections. In my opinion having a user
definable area on the bus is definitely not desirable. It allows non-standard
cards to be produced, which have no chance of being position independent on
the bus. If geographical precedence was being used cards could not be changed
on the bus to change their priority. Also if a card was inserted wrongly the
possiblity of having a card full of dead bus interface chips on the subsidiary
connector would be fairly high. I think that the design of this part of the
system should be standardised as soon as possible.

The reasons why I did not select it for DISCUS (bearing in mind that the bus
was selected about 1976) can be summarised as:

i. There was no facility to lock the bus or provide indivisible operations.

ii. There were only 16 address bits.

A detailed description of the bus that was finally used for the present DISCUS

can be found in the APPENDICES document. I am not going to dwell on it here

except for occasional examples. I would like to consider what the DISCUS bus
should consist of if I were to start again, and then see what is currently
available.

6.1 TOWARDS A NEW DISCUS BUS

First it is important to list what the general requirements for such a bus
are. The following is a brief list that is based on work that is being done
on generating a new microprocessor bus for the IEEE (P896). I have been
involved with these through the IEE, so they represent current thinking on the
subject.

i. Support Multiple Module Architecture. I have specifically not said
"Multiple Processor". Having the latter phrase implies that there are

potentially only a fixed number of processors within the array. It might
be required that there should be a single card (module) *ith several
processors on it. There are two reasons for limiting the number of
modules that can become masters on the bus. First one of physical size:
the bus can only be a certain length long in order to ensure correct
electrical performance of the bus. Secondly the bus arbiter needs a set

of arbitration lines to make each card electrically unique for the

arbitration protocols. The processor identity need not be the same as

6.2

this arbitration level.

By saying that the bus must support a number of separate masters, we
imply several other features of the bus. The protocols for claiming time
on the bus must be capable of handling several requests. These requests
will be asynchronous in order to cope with a variety of different
masters.

ii. Reliable/recoverable and redundant. There is no doubt that the majority
of computers being designed today put this as one of their most important

criteria. Any bus that is considered must not detract from these aims.
The area is fairly broad and covers:

a. Parity protection of data. But not CRC type checks on blocks of
data that are passed across the bus; these are system defined
mechanisms, not functions of the bus.

b. Protocols that lend themselves to easy diagnosis where it is obvious
that they have faulted and what is wrong with them. Thus the fewer
the types of bus cycle that are needed the better. Strange
exceptions to the normal protocols are only confusing and only make
fault detection and diagnosis more difficult.

c. Multiple (redundant) busses should be supported. The protocols
should be done in such a way that any number of alternate busses
could be used by a module. There must be no signals that imply the
state of another bus.

iii. Independent of manufacturer, processor or architecture. The design of
the bus should imply any particular scheme or device. Although we are
constraining the architecture to be a bus-based one.

I intend to look at some of these areas in a little more detail below,

together with some of the problems that the constraints will imply.

6.1.1 Synchronous versus Asynchronous

The first thing to decide is how the bus is going to operate in its basic
transfer cycle - asynchronous or synchronous. It is necessary that any
decision here is ruled by the behaviour of the global store. This bus may not
have any form of controller and in a tightly connected star configuration it
will probably become an extension of the local processor bus. In this case the

various global bus actions must proceed at a rate governed by the local bus.
When they are tightly connected these 2 busses cannot be synchronous. A bus

cycle on the global bus does not run in time with the local. There are 2
methods commonly used to achieve synchronous busses on both global and local
stores. The first is to ensure that the whole multi-processor uses a common
clock and synchronising line. The CYBA multi-micro processor built originally
at Swansea University uses this method and many of the early problems were
associated with providing a clean, skew-free clock. Because of this, the
system does not lend itself to easy reconfiguration and addition of
processors. It has the advantage that it is possible to repeat a run exactly
(external applications hardware allowing) so that faults can be diagnosed more
easily.

The second method is not wholly synchronous in that each of the various busses
throughout the system work synchronously in themselves and the interface card
provides a suitable buffer between the various busses. Obviously at some stage
on this card there will be a point that is prone to asynchronous behaviour.
The normal way to join the the two asynchronous paths is to have a first-in,

6.3

first-out store (FIFO) to allow each bus to work at its own speed. However
there must be some form of handshake to ensure that the correct information is
passed to and from the global store.

The next DISCUS will almost certainly be asynchronous again. If there are no
other ways of providing the arbitration, I feel that the present -'stem is
good enough. However there are new busses and methods being produced that may
well be more suitable. The disadvantage of the present circuit is that it is
star connected, and therefore a bit "heavy" on wires that do not easily fall
on the bus. However it allows the interface to global store to be much more
simple. If 2 or more paths to global store are used this method reduces the
amount of hardware on this interface to a minimum. With each crossing of an
interface the new system is synchronised to the bus requesting system. This
allows for several interface boundaries to be crossed and for the destination
bus to be used as an extension to the requesting system. There are several
disadvantages to this. The first one is that the system can never be run twice
with exactly the same results as can the synchronous system. This is only
required for a small number of faults where it is not possible to provide some

form of software synchronisation to allow process/function synchronisation (an
entirely different subject). I do not think it to be a great disadvantage
especially since DISCUS is probably going to be used with equipment which is
asynchronous and never behaves identically on each run.

With a synchronous bus everything proceeds at the rate of the system clock so
that the speed of the system is limited by this clock. An asynchronous system
is limited only by the handshaking and the speed of the system accessed. This
allows memory of a variety of speeds to be used without very much difficulty.
The speed of the interfaces between each bus is limited by the response of the
asynchronous arbiter. In practice I have found this to be an acceptable speed
limitation and is nearly always the majority delay in accessing another bus
(except for the gross delay of another processor having control of the bus).

DISCUS is limited by this controller to a star connected system rather than a
"daisy-chain" system. By its nature the controller provides a rotating
priority scheme which in DISCUS is considered to be an advantage since no one
device can monopolise the bus (except if the bus is locked by the accessing
device but this could be checked by the bus monitor card). For the present
then we will assume that the bus will be completely asynchronous with no
overall system clock.

6.1.2 Address Lines

It would obviously be unwise to limit ourselves to a number of lines that
prevent expansion with future systems. It is not expected that it will be
necessary to go above 32 bits which will give an address range of 4000 Mbytes.
Thus the bus is capable of going up to this size, but only about 24 bits of
address will be used.

If DISCUS is to be concerned with recovery then some form of data integrity is
needed on the bus. For the address/data lines it is suggested that one odd
parity bit per 8 information bits is used. Thus a maximum of 4 parity bits is

needed for the full address range.

6.1.3 Input/Output

In the present DISCUS there is a separate address space of 255 bytes
specifically for Input/Output using the 8080 I/0 instructions - IN x, OUT x.
Some microprocessors do not have these extra instructions (6800 etc) and rely

on parts of the address range being mapped into I/0 ports - hence the name

6.4

"memory mapped I/O". This allows the full range of normal memory instructions
to be applied to I/0 ports. There is no reason with address range proposed (32
bits) why one of this bits should not be used to indicate a memory-mapped 1/O
range. This removes the need for the I/0 or memory signal line. Also memory-
mapped and I/O type microprocessors can be used on the bus with no redundancy.

6.1.4 Data lines

Like the address it would be unwise to restrict the choice to only 16 bits but
leave room for expansion to 32 bits. The bus must be bidirectional (unlike the
original S100 bus that had separate lines for read and write). Like the
address lines there must be 4 parity lines associated with the data lines.

6.1.5 Byte/Word Accessing

The old microprocessors such as the 8080, Z80 and 6800 are all 8 bit word
micros. The new ones use the bus in a 8 bit and a 16 bit fashion. In, say, the
8086 there is an extra address qualifier BHE/ that defines what the
transaction on the bus is performing.

The following table indicates a general scheme that could be used -

AO B/W

0 0 low (even) byte to low 8 data bits
0 1 16 bit parallel read/write
1 0 high (odd) byte to low 8 data bits
1 1 high (odd) byte to high 8 data bits

This scheme allows both 16 and 8 bit processors to work on the same bus and
both of them can access individual bytes. When the 8-bit processor accesses
the bus the byte/word (B/W) line is left alone. On a negative true bus this
means that this line will float via the terminating network to +5 V, which is
logical zero. The normal addressing with the least significant address bit
being used for the normal 8-bit address range.

There is however a problem with this - no one can agree whether the low byte
is on odd or even addresses. Intel and the Digital Equipment Corporation
consider that even addresses are low bytes, while Motorola and Zilog take the
opposite scheme. The final design of the memory boards can be either way round
and provided that a common scheme is used it will only depend on which
microprocessor is used.

6.1.6 Data Storage

A subsidiary problem to the above is how addresses in different
microprocessors are stored. Basically there are 2 methods:

i. Least significant byte of the address stored first and most significant
byte last. (This is sometimes referred to as "Little-Endian", from the
satire by Swift "Gullivers Travels".)

Ii. Most significant byte of the address stored first: and least significant
byte last. (Sometimes referred to as "Big-Endian".)

The Intel 8080/8085 and the Zilog Z80 both use Scheme i. With the Motorola
6800 and 6502 using Scheme ii.

6.5

Advantages of method i.

a. When the least significant byte occurs first in a direct addressing
instruction, adding bytes on the end causes an increase in significance.
In other words bit zero is always in the first byte. This makes it easier
for compilers to work with varying word lengths. When the least
significant byte occurs last, the position of this byte is variable,
making life more difficult for the compiler (see case 2).

b. When storing variables of differing word lengths it is not necessary to

know the length (i.e. the number of bytes) that the variable occupies in
order to coerce the variable to a shorter length if the bytes are stored
in order of increasing significance. For example consider the following
for a mnemonic assembler similar to the 8080.

Accessing a byte with least significant bit first -

LDA FRED ;Load byte direct
LXI H,FRED ;Load byte indirect
MOV C,M

Accessing a byte with most significant bit first -

LDA FRED+1 ;Load byte direct
LXI H,FRED+1 ;Load byte indirect
MOV CM

In all these cases the variable is stored as -

FRED: DS 2

The key to the difference is the "+1" after the variable name. If a double
precision variable of four bytes was used this would have to be "+3". This

would make the compiler take special action for different length integers when
coercing to bytes.

Advantage of method ii.

a. When addresses are put out in a memory dump they appear in the correct
sense, although with a high level language the need for this is

doubtful.

How character strings are stored does not really matter since the bytes are
scanned from low to high address. The characters will appear in the correct
sense when there is a memory dump.

Currently there seems to be a great leaning towards Method 2 for the new

microprocessors. The reason for this is to allow the 16 bit microprocessor to

fetch data in 16 bit words that has been stored as -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T h i s is a s t r i n g

When method 1 is used the data would have to be stored as -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
h T sii a a a a r t n i g

If a high level language was being used there should be no need for the

programmer to worry how the data has been stored in memory. Debugging by

6.6

patching in the machine code and inspecting how things are stored should be
avoided at all costs, thus looking at memory directly should be discouraged.
The only time that it would be necessary to know would be when peripheral
devices write directly into the store for later use by a processor.

Generally I have no strong preference about which way the bytes are ordered
within the memory or on the bus. If I had to make a choice it would be method
1 and thus least significant Justification on the bus- although it must be
said that there is very little difference between the two and method 2 is
currently favoured.

6.1.7 Multiplexed or Non-multiplexed

In order to conserve pins on the bus it is sometimes arranged that the address

and data are combined on the same lines. They are separated by time, and the
correct synchronisation is achieved by having the appropriate control signals.
While undoubtably releasing a great many lines for other control signals, the
amount of extra logic required to produce non-multiplexed from multiplexed
signals on each card is large. If we are to have room for 32 address lines, 32
data lines, 8 parity lines that leaves very little else for the control
signals. It has been suggested that only in large systems are part of the
data/address bus multiplexed. This allows for small systems to be made with
non-multiplexed lines and have the bus extensions multiplexed. (See more of
this below.)

DISCUS treats store interactions by a master-slave protocol at all times. This
includes the accessing on the local bus. At present the local processor bus
always has the processor card assume that the bus is permanently assigned to
it so that it does not have to request time on its own bus. This saves a lot
of complexity on the processor card, and since much of the activity on that
bus is done by the processor card, and it saves any time spent in 'equesting
the local bus. Any DMA activity on this bus will generally be in s rt bursts
and can safely interrupt the processor card by using its HOLD facility to
suspend operation. This allows a very simple interface to the local bus for
both the processor and the DMA units (see the Appendices).

6.1.8 Multi-master Working

The ability for several master/slaves to share the same bus in order to
control/access shared resources is a fundamental one. It can be very complex

and it is up the bus designer to steer a course between this complexity where
all possible eventualities are catered for (a difficult task since not all are

foreseeable), and simplicity where only the minimum amount of lines are used
on the bus; yet giving a sufficient amount of control that the system can be
used in the majority of applications. It is important that not only the basic
electrical and simple protocols of this control be studied, but also the
implications that will occur at a system level. For instance the -rotocols
necessary to support recovery mechanisms.

Before a module on the bus can acquire control of that bus to carry out
transactions to other modules, it must go through some form of standardised

*. protocol. This will result in others being kept off temporarily while it
carries out those transactions. There are basically two functions that the
decision or arbitration circuitry must carry out.

i. The primary task must be to ensure t~lat only one master has control of
the bus at any one time.

ii. A secondary task is to give and assert a priority to the requests so that
every potential master will be able to get fair shares on the bus.

6.7

6.1.8.1 Ensuring Single Master

The basic form of this protocol is a single level handshake. The potential
master gives out the signal "I want the bus", and then remains dormant until
at some time later it gets the signal "You have the bus" from some outside
source. When this latter signal is true then, and only then, may that master
use the bus. When it has finished it removes the "I want the bus" signal
indicating to the external controller/circuits that someone else can have a
go.

Asynchronous Problems. Due to the asynchronous nature of these requests
there must be some form of arbiter that can make sensible decisions in the
event of two requests arrive simulataneously. If two (or more) requests arrive
at the arbiter at precisely the same time there has to be some form of
criterea that the arbiter can apply to decide who is to win control of the
bus. This problem is caused by the inability of a simple RS latch to make up
its mind when confronted by simultaneous signals. Thus most D-type latches do
not behave properly when confronted by one of two strange situations.

i. When a very short pulse is presented to the reset of the latch it may not
necessarily latch. It will never latch if this pulse is shorter than the
combined propogation delays of the two cross coupled gates.

ii. If two inputs are presented to the latch at precisely the same time the
latch is unable to decide which way to go. This "teetering on a mound of
instability" can last for an appreciable length of time. The outputs of
the latch can oscillate from one state to another before coming to rest.

Both these states cause flip-flops of whatever kind to exhibit what is known
as the "meta-stable" state. That is a state which is not defined and cannot be
said to have either of the two logic levels. This state can last for an

appreciable time. With Schottky logic this state can last for hundreds of
nanoseconds in the worst case, and during this time the external circuitry
that the arbiter is driving must ignore this "meta-stable" state. Numerous
papers have been produced [9],[10],[15],[16],[17] which discuss the problem
and suggest what to do about it. It must be said that whatever these papers
say the problem will never be cured - only made more improbable. The classic
ways of avoiding the problem are to make the system synchronous or slow the
system up so that the chance of "meta-stable" working is reduced. If the
system is required to run very fast (greater than 20MHz request rate) it is
really constrained to be synchronous. Circuits that arbitrate asynchronous
requests always have a "flip-flop" in them. These may not be obvious, and may
be over several gates. People who claim that they have found a complete
solution are wrong - a careful look will reveal a familiar "flip-flop"
somewhere in the circuit. It does not have to be a integrated circuit marked
"D-type" etc. It must be borne in mind that there is no way of completely
removing the meta-stable latch.

Synchronous Vorking. The simplest criterea that can be applied to an arbiter
is that all the requests arrive at fixed points relative to the arbiters
sampling time. This is usually achieved by making the requests arrive on one
phase of the clock and sampling on the other phase of the clock. This removes
any possibility of the requests changing at the sampling point. However there
are two things that should be considered -

i. The clock must be provided to all the modules with minimum or no skew.
This becomes troublesome when the propogation delay between the modules
is an appreciable fraction of the half-period of the clock, and delays in
the requesting circuitry might cause an edge to stray towards the
sampling phase of the clock.

*-6.8

ii. The clock is a potential source of electrical noise on the bus and must
be suitably terminated. Preferably it must also have its own earth return
associated with it.

Although synchronous working does ensure that requests arrive a some fixed
time, the problem of deciding between two requests still remains. This is
usually done by giving each request an associated priority or identity. There
are several methods of giving a priority to requesting input. These can be
categorised as geographical and electrical.

6.1.8.2 Priority Schemes

GEOGRAPHICAL PRIORITY. The geographical priority refers to the position of the
card within the bus having an inherent significance. The most usual of these
schemes is the DAISY CHAIN or SERIAL PRIORITY SCHEME.

Daisy Chain Scheme. Each card has two lines "I've got" (RQ) and "I can't have"
(GE/). Each line is connected to the card positions either side. In other
words the RQ goes to the GR/ of the next card, and the GR/ comes from the RQ
of the previous card. At the top of the chain the highest priority card has
its GR/ line grounded so that it always has the bus when it asks, and by
making its RQ line true it forces the GE/ line of the next card false thus
forcing all the cards of lower priority to give up the bus (only one card
should be using the bus) by a ripple affect. The lowest priority card has a RQ
line that does not go anywhere and is totally dependent on the GE/ from the
cards above remaining true.

Daisy Chain DMA is the system used on the Intel Multibus (IEEE 796 bus
standard), and has been proposed for several other busses.

ADVANTAGES

i. It only uses two lines on each card with one line for the synchronising
clock. Some systems use an extra line for Bus busy. This system is the
most economical in the use of backplane connections.

ii. There is no central controller on the bus.

iii. There are potentially small amounts of control circuitry on each card.

DISADVANTAGES

i. It can take an appreciable amount of time for a request to ripple through
from one end of the bus to another. This puts a limit on the speed of the
system.

ii. The priority of a requestor is dependent on its physical position in the
rack. A change of priority means a change of position. In some systems it
is not necessary to change the position of the card, but just change some
links on the backplane.

iii. It is possible for a low priority requestor to be shut out of the system
for extended periods by continual use of the bus by higher priority
devices. In some cases it would be possible for them to be shut out
indefinitely.

iv. If a card is missing from the chain a jumper has to be placed in the
chain.

6.9

ELECTRICAL (PARALLEL) PRIORITIES. If the position sensitivity and ripple
effect of the daisy chain is considered an unacceptable constraint on the
system (and in large systems it usually is), then some form of priority (PRx)
associated with each request that is placed on the bus together with the
request (RQ) must be used. There must also be a grant line to indicate that
the requestor can use the bus (GR). The number of priority lines is determined
by the maximum number of devices that are going to be needing the bus. The
priority is encoded onto these lines in binary. Thus, assuming that there is
no error mechanism (parity etc), there will be 5 lines (PRO - PR4) for 32
requestors. Which level will be the highest will be determined by the design
of the system. A major disadvantage of this system is that it is possible for
a low priority requestor to be completely excluded from the bus for
considerable lengths of time. The method of using a protest feature to allow
low priority cards to acquire the bus is not altogether satisfactory since
this line is really only another priority line (PR5 in the above example) and
ultimately suffers from the same abuse. Another method is to have each card
apply for the bus at some fixed low priority and then work its way up in
priority every time it fails to acquire the bus. The disadvantage here is that
at some time there will be two or more cards with the same priority level.

One advantage is that the system can be made with no clock and can be made
asynchronous with a fair degree of reliability. Also there needs to be no
central controller and cards can be missing from the system. Currently the
best example of this type of DMA arbiter is the one that is proposed for the
3I00 bus (IEEE 696) and the new proposed micro standard in America - IEEE 896.
This bus assumes that there is a central device (such as the main processor
board) that needs to "held" in suspension while DMA activity is carried out,
and is the focal point for the RQ and GR lines. This controller is still not
totally resistant to asynchronous problems. It is possible for a priority to
be asserted on the bus without its associated request. This is caused by an
old friend. In the arbitration circuit currently proposed there are two D-type
latches that provide the control signals for the priority and the request for
the system. They are set by a pulse from the request circuitry. When I
analysed the proposed circuit, I found that it was possible that this pulse
could be shorter than the recommended latch parameters. Also since there are
two latches the parameters will be different. Therefore one latch could be set
and the other not. A priority could be set with no request and vice-versa.
This would make the system "hang up" if the priority was sufficiently high
that no other master could acquire the bus. It is worth noting here that the
INTEL MULTIBUS requires that all the potential bus masters compete for the bus
even the main processor.

ADVANTAGES

i. It only needs a relatively small number of bus lines. For instance 32
requestors with no protest feature can be accommodated onto 7 lines on
the bus

ii. There need be no system clock to all the cards.

iii. The priority system need not be dependent on a cards position, only its
identity/priority-level.

DISADVANTAGES

i. The circuitry is complex in order to get correct asynchronous working.

ii. It is still possible for a low priority requestor to be shut out from the
bus. The protest feature that haM been added is merely another level of
request that can be overridden by another high, priority protestor. The
system could lend itself to considerable abuse. Ideally there should be

6.10

a protest line for each card - this then turns the whole scheme into the
star connected system.

iii. There needs to be a something on the bus that gives back grants to the
requests. If this is not the main processor (which assumes that it always
has the bus except for the DMA requests) then the request/grant lines
must be looped back on themselves. This is required when going to dumb
global store as in some multiprocessors. If it is looped back then the
tighter timing in the asynchronous arbiter may give rise to more meta-
stable states.

Star Connected Schemes. There is a further method that is worth noting where
there are no priority lines but each RQ and GR line is taken separately to a
common point where the arbitrition is carried out by a separate controller.
This can be completely asynchronous from the requesting card but can be
synchronised on the controller card. The only disadvantage is that that are a
mass of unbussed wires leading to an unbussed card with special connections. I

choose this system for the present DISCUS. There are a maximum of eight
requestors on any one bus. By increasing the levels (or depth) of requests it
is possible to get many more requestors (at least 32). With the new DISCUS it
has been considered that there should be up to 24 processors in a single crate
with its global store (the whole DISCUS in one crate therefore); this would
give 48 lines on the back of the bus that were individually connected and not
bussed. This is not very satisfactory for large systems.

Intel also use this scheme on their Multibus. The most common place is on the
MDS-800 development system bus, where only every other slot has the connection
to the parallel arbiter mounted at one end of the MDS-800 rack.

ADVANTAGES

i. Only two connections to the bus are needed for each requestor.

ii. There need be no synchronising clock on the bus.

iii. It is possitle to design a rotating priority arbiter that will ensure

that all requestors get serviced, and no one can dominate the bus. This
is the scheme currently used on DISCUS and has proved to be satisfactory.

iv. In general the circuitry is very simple.

v. It would be very easy to design a controller that worked on a different
priority scheme and one that was able to mask selected requestors. This
circuitry is contained upon one card only.

DISADVANTAGES

i. There is lots of wires on the back plane that are not bussed. 24

requestors will require 48 extra lines on the back plane.

ii. There has to be one special card i the system to which all the request

and grant lines are taken. This card is not part of the bus and would
unless defined by a standard, be user defined (not desirable). It is
worth noting that this card could contain a lot of *other special circuits
such as power supply monitoring, reset circuitry, and other "nasties"

that need not go directly on the bus. If no other way exists around the
bus starvation problem, then I would probably use this method on a future
DISCUS, as giving me the most flexible control over the DMA commands on
the bus.

6.11

6.1.9 Control Lines

With the amount of data/address/parity lines, the choice of control signals

has to be very restricted and there should be no redundancy in the control
lines. In other words there should be no signals on the bus that could be
derived from any other signals.

Reviewing the requirements for such a bus:

i. It must be on one connector - so that a single card can use it for small

systems and double Eurocard systems can use bus duplication. Also in a
double connector if the second is not used for duplication it can be used
for user defined I/O.

ii. It must be capable of taking up to 32 data and 32 address bits. These can
be multiplexed or non-multiplexed where possible.

iii. There must be up to 8 error bits for data and address.

iv. Indirect connectors must be used.

v. The power connections should reflect an extension of the on-card power

matrix.

In the following discussion I intend to take into account work being done on a

new bus by the IEEE P896 committee in America. This committee was set up to
produce a new standard for future microprocessor systems (the bus is sometimes
called FUTUREBUS). The committee has been soliciting advice from engineers

around America, Europe and the rest of the world. I have no intention in
discussing the P896 bus in great detail here. However there are one or two
points that are worth considering.

The P896 has a considerable problem fitting all the signals onto a single Euro

connector - even the 96 way one. There are two levels that are provided. Level
1 is designed for the 64 way connector on the 96 way shell. It provides for a

basic level using 32 bit multiplexed address and data. It has a parallel 5 bit
wide bus arbitration scheme that allows up to 32 masters on a single bus. The

bus is fully asynchronous and has a full set of read/write and acknowledge
lines to carry out the command protocols. There is no I/O space only memory
mapped space. At present the proposals have not been completed or published

for comment, and the whole design remains somewhat fluid in definition. The
level 2 bus contains the error checking functions and extra power connections.
I hope that when the two levels are defined that level 2 will be defined
completely first and then level 1 defined as a suitable subset that does not
use all the facilities. Defining level 1 first and then trying to graft on a
superset afterwards is not good design.

There are one or two points that I want to discuss in a little more detail as
they bring up important points for DISCUS.

6.12

Processor Control Register (PCR). It is intended that there is a register on
cards such as the processor card, that is addressed to control that card. It
is a 16-bit register with each bit carrying a command such as RESET. This
proposal is currently not to be used by P896 (at one time it was), but it is
worth looking at none the less. While it seems to be a good way of reducing
down the number of lines on the back-plane, I am concerned about its behaviour
under certain circumstances. The initial system reset to the processor is my
chief worry for two reasons.

i. (CATCH 22) - When cold starting the ability to access the PCR would
depend on the processor being in a fit state to receive and honour a bus
request from the card providing the reset. If it needs resetting at
start-up it will not be able to give up the bus to the reset card in
order to receive that reset. I feel it particularly dangerous that part
of the system has to be "awake" at switch-on to arbitrate on the bus for
PCR transfers.

ii. Often in a multiprocessor there is a central data store (as distinct from
the local stores which have the code and local data) with a set of local
processors in star connection around it. When giving a global reset to
the local processors in a multiprocessor such as this it would be
necessary to provide a controller on the global bus that can write to the
local processors. It is an important principle for recovery that a local
processor is unable to access another processor's code in the local store
of that processor. This means that the control signals only flow one way
- from a local processor to global store, not the other way around. This
removes the natural partioning that is offered by a DISCUS like system,
and thus this type of reset connection would be unacceptable.

I think it is essential for system security reasons that the initial reset is
on a separate line on the bus.

The ability of addressing a particular card should not be a feature of the bus
and contain such things as interrupts or DMA requests. Only specialised
commands to cards should be carried out here. However it does allow the
possibility of targetting commands to specific cards. Within DISCUS this would
be particularly useful for recovery where it would be possible to interrogate
cards for their status etc. There is one disadvantage however. When interrupts
are used, usually by their very nature they are used in order to extract an
immediate response from the device being interrupted. In the present DISCUS
all the interrupts on the back/plane are used for system rather than
applications use. Users who wish to have interrupt controlled peripherals
should have a special card that contains the interrupt transactions to itself.
This is done in a similar fashion to the intelligent peripheral card for
DISCUS. Data is assembled and dealt with locally by this processor rather than
the main local processor. The peripheral processor sends information to the
local processor via DMA. Any interrupts on the bus would be at a system level
and probably used for recovery mechanisms. Whether having an immediate
response or not (due to the reason indicated above) remains a matter to
discuss with the operating system designer.

Serial Bus. Three lines of the current P896 proposals are reserved for a
serial bus. These three lines are: signal, clock and ground for the previous
two. The rationale seems to be that since it is impqssible to fit all the
signals individually on the backplane a serial scheme is used to send messages
to individual cards and use a PCR type of register to receive the ata. It is
almost like having a single ended packet-switching message scheme. Commands
such as interrupts will be placed on this bus, also it can carry information
to help in recovering from system failure on the bus.

6.13

Before looking on the black side there are reasons for the serial bus -

i. It provides a back-up to the parallel arbitration scheme when that has
broken. This is useful for recovery.

ii. A great deal of information can be passed down the single serial line,
that would require too many lines on the parallel bus.

However there are a variety of reasons that I think condemn it. For example:

i. The circuitry on each card is complex. At the last count it would take
about 48 MSI integrated circuits to make the bus And its protocols. In
defence of this it would be hoped that some manufacturers would make a
custom device to control the serial bus. Although it will be a long time
before this device was available.

ii. It is considerably slower than the parallel approach. When interrupts are
required to initiate some action when doing recovery, these interrupts
usually require immediate action in most recovery operations in order to
contain errors. Having to wait while the bus is acquired and then data is

put over the serial bus is totally unacceptable for any serious work on
recovery. In fairness it must be noted that the parallel bus suffers from
the same deficiency of not being unable to access the bus when the master
wants to, but there is not the delay inherent in transmitting serial
data.

iii. The necessity of having a clock with the serial bus means that there is a
potential source of electrical noise on the bus that is avoidable; and
it does not easily allow future expansion when the bus is required to go
faster. There has to be a master clock somewhere in the system and this
clock has to be fed out to all the local processors in a multiprocessor,
which gives rise to an unexpected opportunity for the designer to
exercise his prowess in dealing with matters such as clock skew etc. Also
the master clck will be allow single point failure.

There have been suggestions that the serial bus should be made a optional
feature of the level 1 or that it should only appear on level 2. The first
suggestion is ridiculous - why not let everything on the P896 be optional and
people do what they want. If it appears on the bus it must be obligatory and
rigorously defined. The second suggestion is more sensible and I suspect that
is what the final P896 proposal may have.

6.2 MECHANICAL CONSIDERATIONS

As a final comment on busses in this section mechanical matters must be
considered. By its very nature the bus is very susceptible to failures due to
mechanical connection. It is important that the correct choice of connector be
made since the failure here will make a nonsense of the best designed system.

The choices are basically direct on-card connection or a card mounted
connector. The direct connector is more simple but if the cards are used in
extreme environments or are being removed on a regular basis it is possible to
get dirt and oxide layers on the connections. If gold is used on the edge
fingers on the card it is possible that the gold-plating can dissociate from
the copper, causing a high impedance layer between the copper circuit tracks

and the gold. Also if the circuits are removed, care must be taken that the
edge connectors are not handled or else grease layers can provide a high
impedance layer.

6.14

Indirect connectors such as the DIN 41612 Euro connectors are mounted on the
card by means of bolts and soldered connections. Connections between each part
of the plug and socket is usually by round gold-plated pins. These pins are
mounted in a protective shell so that it is impossible to touch the pins or
sockets on either part, unless one has matchstick fingers. It is impossible to
insert the card so that the signal lines become crossed (a singular
disadvantage for the SI00 bus where the power connections are adjacent). The
indirect connectors are made in a variety of sizes and pin configurations. The
current trend seems to be to use a 96 way shell with only 64 pins in the
shell. The present DISCUS uses this connector and has proved to be completely
trouble-free. Another advantage is that indirect connectors have the
possibility of having more than 2 rows of connectors onto the back plane.

DISCUS uses a bus that is distributed over two 64/96 way connectors. In
retrospect having the bus over 2 connectors is wasteful and if possible I
would rationalise it to fit everything on one. This has the advantage of
allowing bus duplication on a double Eurocard. However it is essential that
discipline is used when choosing the allocation of the bus so that it becomes
possible to fill the connector with a comprehensive set of non-redundant
signals. (This discipline seems to have been difficult to acquire or agree
with the P896 bus)

The bus should be carried by some form of printed circuit motherboard with the
bus connected in a regular array between the connectors. Since this bus can be
30 cm or more it has to present a defined and repeatable impedance to the
drivers on the cards. This is usually achieved over long busses by having some
form of earth plane between the tracks that provides a reliable earth return.
This earth plane should be an extension of the power matrix on the cards. By
having a pre-manufactured board, rather than back wired connections, the basic
chassis of the computer can be made up relatively quickly and cheaply.

6.15

7. CONCLUSIONS

In conclusion then I feel that DISCUS has been successful. It is impossible at

present to give any quantitative assessment of success here. The applications
for which DISCUS is being used will take a little time for complete results on
its performance to be derived. However there are one or two key points that we
have found in the use that make DISCUS particularly important.

7.1 EASE OF DEVELOPMENT

With DISCUS the overall system is split up into a number of functions that are
run on a number of processors. The advantage of splitting up a system into
smaller parts that can be individually written and tested and then run is one
that is not special to DISCUS. Any large computer with a real time software
kernel is able to do this and DISCUS is no different in this respect. It gives
the advantage of code that is easier to write, debug and modify. The functions

are of such a size that one man can hold a function in his head. This is
important in that he can understand "completely" what he is trying to achieve,
and thus what the software should be doing. The software can be tested by
simulating the inputs and outputs to the function he has written, and testing
the function under as many conditions as possible. When the system is brought

together, provided that each function has been tested correctly, the complete
system has a good chance of working with very little debugging - see more on
this below.

This is all very well but what extra does DISCUS give us? The key word is
isolation. At the risk of repeating myself, when a DISCUS system is designed

the system is split up into a set of functions that will eventually be run on
one of several separate DISCUS processors. A normal method of working would be
to give each function to a different designer (assuming there are enough
designers). There is some initial design (up to several months possibly) on
how the functions can communicate together. This requires that the global
arrays and channels between the functions are rigorously defined before any
work on each function is carried out. This process will be flexible and there
must be several times in the design when the channels/global store allocations
are changed. However this ought not to occur too late in the development.

Some of these processors will require applications hardware on them. This will
entail the design of special interface cards that live on the local DISCUS

processor. If this was required on a large single processor computer, the
design engineer would have two basic choices. Firstly he could take over the
machine for as long as he could and develop the hardware directly on the bus
or interface ports provided. (It is to be hoped that a little thought be
applied to the design before he launches himself at the computer). The other
method would be to make a test box that simulated the computer and then test
his hardware using this. A big problem here is that he cannot be sure that
this test box is true reflection of the computer. He may well have to start
all over again when the applications hardware is connected to the computer.

Since DISCUS is a group of independent asynchronous computers, a single DISCUS
processor can be given to the hardware designer and he can design his hardware

using this. I wrote the DISCUS Monitor (see Appendix [29)) in order that
designers can use a single DISCUS processor alone. In this way hardware and

software design can proceed in parallel. When the processor hardware has been
fully done and tested the function can be tested by using only one other
DISCUS processor that is pretending to be the rest of the system. In this way
a special test harness does not have to be written for the function, as one
might have to do on a single processor machine. The function that is tested by
the simulator function contains exactly the same software as that that will
run with other real functions. As far as the function under test is concerned

7.1

it has the rest of the real system around it. This concept has been
particularly successful.

7.2 ERROR CONTAINMENT

Because function isolation is forced by the hardware it is possible to contain
errors in most cases to only one processor. The processor that has faulted can
take some form of recovery by itself, with no reference to any other
processor. All the other processors that have not faulted can carry on as
normal giving minimal disruption to the user.

7.3 FUNCTION DUPLICATION

Another advantage is one that is impossible with a single processor system. A
multiprocessor architecture can use the principle of "incremental" computing
power. In a single processor system, if it is found that the system has not
got sufficient capacity to do the job (due to speed or memory space), there
are virtually no simple ways to get around the problem. The ways open to the
designer are: redesign the system for a faster/bigger computer, duplicate the

processor (and thus rewrite the software to cope with this), or optimise the
code. The latter thought often encourages the designer to rewrite the system
in assembly language, not advisable. Whatever means he chose it would be open
to a great deal of difficulty and expense with no guarantee of achieving what
the designer intended.

However with DISCUS it is possible to duplicate functions. This means that
there is another processor loaded with identical software as the one that is
unable to perform its loaded function. No additional software need be written.

The only difference between the processors is the hardware identity switch on
the Bus Supervisor Card - hardly a great overhead. For instance, referring to

Fig 10 in Section 2, the function F6 provides a point through which all the
data flow passes. This function is required to do too much local processing
would be an ideal candidate for duplication. There are snags though, function
duplication is not an inherent feature of a system such as DISCUS, the system
has to be designed with duplication in mind. There are definite rules that
must be applied to this task. I am not going discuss these here in detail but
commend you to the main Operating System report by M.P. Griffiths [83 for more
information.

Finally before looking at function splitting it worth bringing to light a snag
with duplication. It is not easily possible to duplicate a function that has

applications hardware (device handlers) on them. The hardware would have to be
duplicated. This is not a very easy process.

7.4 FUNCTION SPLITTING

There is one subject that I have studiously ignored throughout the preceding
sections: automatic function splitting. This is an extremely difficult
subject and one that cannot be discussed in a few words. At no time time was

it ever intended that we should look at this. However a few pointers here as

to why I have ignored it may help.

In order to split a task into a set of functions we have to be able to do
several things. Firstly we have to be able to describe the problem in a form
that the machine can understand. Secondly we have to provide some form of
guide to where devices are (this could be part of the preceding description).

Lastly we have to give the machine some criteria to evaluate the "goodness" of

the split.

7.2

.. I b ' i ' :
- '.........

If we start with the first two points, what we would have to develop is a way
of describing our system in a fair amount of detail. Thus what we would have
to do is write a description of the same order of complexity as our final
program. If we could provide a suitable description for the machine to split
the task correctly, it would also be able to write the program for us. In
effect the language used to describe the task has become a very high level
programming language. So perhaps research into this rather than function
splitting is required first.

As to the goodness of the split, there would have to be a description of the
parameters of this that the machine can use - very difficult.

What I can give, however, is a brief guide as to how a programmer can use a
simple set of rules to split his system into functions.

i. Maximise local store processing. When accessing global objects there are
two delays added onto the access that would not occur with accessing a
local object.

a. The arbiters will have to acquire global store. This depends
primarily on whether any of the other processors are accessing
global store with the "locked" attribute. In general this only
occurs when a global object is being booked for access, when the
software semaphores are being set. Therefore it is important that
global objects are not continually opened and closed, as this will

use a lot of locked accesses to global store. (This is not the only
reason that this should be avoided, it is important to aid
recovery.). In general I have found that the global store accesses
are minimal compared to other delays.

b. The operating system has to check the validity of the access. This
is a more serious delay in the system than the hardware delays, and
it is important that it should be reduced to a minimum. When
splitting the system the areas of minimum data flow between

functions should be the "cleavage" point when the system is being
split.

A further reason for using local store is that it aids the prevention of
errors affecting the rest of the system. Providing that the errors occur
when the local data is being used, it is unlikely that the global data
will be corrupted.

ii. "Brain-sized package.' Each function should be capable of being
understood by one man. On the basis that smaller programs are easier to
write, debug, maintain and document than large ones, the general rule is
that it is better to use two smaller functions than one larger one. The
only complication here is that in a system such as DISCUS, one more
function means one more processor. Luckily with DISCUS this is a fairly
simple (and cheap) process.

iii. Function duplication. Because it is desirable to replicate functions for
throughput and redundancy, it is important that the system be split to
take account of function duplication. Exactly how this should be done I
have left to the report on the operating system [8] to go into in greater
detail. However it does bring to light a very in~eresting point - how
should the hardware interfaces be done on DISCUS? As I have indicated
above duplicating (or more) the software only requires another processor;
if this processor is only looking at global store, then this is easy.
However if this processor has some external applications hardware on it
then it is more complicated. Replicating hardware is more difficult,
requiring specialised connections to the incoming data. Since we cannot

7.3

duplicate the hardware interface processor, it important that this
processor only gets the incoming data into some digestible form
(conditions it) and passes it on to the other functions in the system
which can be duplicated. Since the processor is only carrying out a very
simple input/output function it is unlikely that any "bottlenecks" will
occur there.

7.5 DISADVANTAGES OF DISCUS

What we have been primarily concerned with in DISCUS is recovery in the
software. Redundancy of hardware has not been considered and there are many
places in DISCUS that single point failure can occur. In general if one
component of DISCUS fails then the whole fails, for instance the global store
and its accessing. The fun-tions could be duplicated - however there are traps
for the unwary here also. it is possible that a processor can fail and thus it
is possible for it to leave a selection of global objects to be left in an
open state and thus prevent any other processor from accessing them. This will
cause the system to crash with only operator interference to restart the
system. It would be possible for the booking mechanisms at the operating
system level to be corrupted and a channel/array booked for a nonexistant
processor. Why not, you may ask, have another processor detect this condition
and take some remedial action to remove the offending processor?

This would require either a single master processor, or the other processors
being able to agree on when another processor has failed and then throw that
one off. At present the former is impossible as all the processors have equal
priority and under no circumstances can one pre-empt another.

The latter would require each processor being able to decide when a processor
was wrong, and this implies that it must have some knowledge of what that one
was trying to do. At present DISCUS processors do not have any concept of
what their fellows are trying to do, in fact it could be said they have no
knowledge of whether they have any fellow processors at all. As far as each
processor is concerned they get data from an external device or global store
location, and send it back to similar devices. How it got there, whether by
another processor accessing global store, by a specialised device on the
global store or even black magic, is of no concern.

Finally I am not at all happy with the present DISCUS bus. Experience and
actually trying to use it for a variety of things has uonvinced me that it is
pretty awful. For instance there is a high speed clock adjacent to the local
bus acknowledge line, the latter has to be treated with care if noise pick-up
is to be avoided. Also the DMA request/grant lines are parallel to the data
lines. This causes induced noise from the data bus line drivers turning on. It
would definitely not be used for the next machine.

7.6 SUCCESS (OR OTHERWISE) OF THE PRESENT SYSTEM.

There is no doubt that the present system has been successful. Several single
DISCUS processors without global store have been used, both as development
aids for producing software and hardware in the multiprocessor, and for people
who required a simple micro-based system. Four complete DISCUS computers have
been made and all work most reliably. One of them has been delivered to
someone who had nothing to do with the design of the system, but kerely wanted
a multiprocessor for a task. He has used it with no problem for over two
years. The application that we have is a small local telephone exchange. At
the time of writing it has been running or about 18 months. The application
has demonstrated that a fairly large system with 6 functions can be written
with the minimum of effort. Each of the functions was tested before the

7.4

complete system was integrated in accordance with the ideas above. The actual
integration only took an afternoon with only a few faults that were easily
rectified. Function duplication was demonstrated by having four processors run
identical software.

Another disadvantage of DISCUS is speed. DISCUS runs relatively slowly. Both
these applications indicated to us that the main speed limitation lies in the
operating system. The basic cycle time of the processor is about 2.5
microseconds. This time is for a simple local store access. The global store
accesses take anywhere between this time and about 15 microseconds. This time
will increase to several milliseconds if there are many DISCUS processors
accessing the global store in Memory-Locked mode and accessing large data
arrays. In normal working we have found that the majority of the time is spent
by the operating system doing the basic housekeeping when accessing the global
objects. Also the operating system is written in a high level language which
in our case does not have a very efficient compiler available to us. To quote
ref [8] - "Whether this is due to the fact that the operating system is
written entirely in CORAL and may simply need "tuning" to speed it up, or
indicates a more fundamental flaw in that the (operating system) protocols are
inefficient, has yet to be determined."

7.7 THE FUTURE

There is the new Mark 1.5 DISCUS that I have discussed briefly in the other
sections that we can use for interim experiments in recovery. However parallel
hardware research should be done to look at some new architecture based on
DISCUS. I have looked at some areas of this in some detail in the other

-'sections, so I will not go over this again. Much has to be done on recovery
using DISCUS, or more advanced machine, at present we have given ourselves the
hardware and operating system to provide the facilities; how we use them to
provide distributed recovery is yet to be done.

So as a final memory jogger the following is a list of areas that would be
useful to explore with a new DISCUS.

i. Looking at memory management using the new manufacturer supplied devices
(such as the Zilog Z8010). At present DISCUS has no form of memory
management - it is all absolute addressed, and facilities such as bounds
checking on data areas could be used. The speed of the system would be
made much faster since what is done in software at present could be done
in hardware. The MMU could be used as the basis of capability-like
structure to give DISCUS a more secure computing base.

ii. Using a fast 16-bit microprocessor to help increase the overall system
speed over the present DISCUS.

iii. Using several global busses to provide redundancy, and to provide

alternative paths to global store for reducing contention.

iv. Look at some form of data protection on the bus (parity etc).

v. Investigate processor redundancy which, as I said in Section 1, is
something that we never considered.

7.5

REFERENCES

These references represent only a small fraction of the total available on
multiprocessors. The reference marked with an asterisk contains a useful list
of further references.

1. CASAGLIA, G.F.
"Distributed computing systems: a biased review"
Euromicro Newsletter 4, No 2, p 5, 1976.

2. SEARLE, B.C., et al
"Tutorial Microprocessor applications in multiple processor
systems"
Computer, Oct 1975, p 11.

3. BAKER, K.D.
"Functional decomposition on multi-microprocessor systems"
The Radio and Electronic Engineer
Vol 47, No 11, pp 497-504, Nov 1977.

4. Intel iSBC80-30 Single Board Computer Hardware Reference Manual
No. 9800611

5. Intel MULTIBUS Definition

6. FRASER, A.G.
"Loops for data communications"
Bell Laboratories Computing Science Tech Report 24, Dec 1976.

7. TONG, H.D.
"Microprocessor based multiprocessor ring structured network"
AFIPS NCC 1975, 567.

8. GRIFFITHS, M.P.
"The DISCUS Operating System"
RSRE Report No. 82009

9. CHANEY, T.J. and MOLNAR, C.E.
"Anomalous behaviour of synchroniser and arbiter circuits"
IEEE-TC (Coress), Vol C22, No 4, April 1973, pp 421-422.

10. PECHOUCEK, M.
"Anomalous response times of input synchronisers"
IEE-TC, Vol C25, No 2, Feb 1976, pp 133-139.

11. Z8000 processor and Z8010 Memory Management Unit Data Sheets
Zilog Corporation.

12. Intel 8080/88085 Assembly Language Programming Manual, 9800301

13. NICHOLS, H.K. and FIELD-RICHARDS, H.S.
"DISCUS - A distributed control microprocessor system"
Microprocessor and Microsystems journal,
Vol 3 No 6 July/Aug 1979, pp 267-270

14.6 SATYANARAYANAN, M.
"Commercial Multiprocessing Systems"
IEEE Computer, May 1980, pp 75-116.

(RF.1)

15. PLUMMER, W.W.
"Asynchronous Arbiters"
IEEE Trans on computers, Vol c-21, No 1 Jan 1972, pp 37-42

16. CORSINI, P.
"Self-synchronising Asynchronous Arbiter"
Digital Processes, 1 (1975), pp 67-73.

17. COURVOISIER, M.
"A programmable arbiter for multiprocessor systems"
Digital Processes, 5 (1979), pp 271-281

18. GRIFFITHS, M.P.
"Input/Output Package for use with the GEC RCC80 CORAL compiler"
RSRE Internal document (not published)

1.. SHRIVASTAVA, S.K.
"Stucturing Distributed Systems for Recoverability and Crash
Resistance"

University of Newcastle-on-Tyne Memo SRM/227.

20. JOHANSSON, L-A.
"Virtual Memory Management for Microcomputers in Real Time
Applications"
Eurimicro Journal, 5 (1979), pp 235-238.

21. BISHOP, P.G.
"The Design of Software for Distributed Control Systems"
Euromicro Journal, 6 (1980), pp 135-143.

22. HERRING, J.
"The Intel 8086, Zilog Z8000 and Motorola MC68000 Microprocessors"
Euromicro Journal, 6 (1980), pp 135-143.

23. SAMI, M.
"Reliability and Self-diagnosis Aspects of microprocessor
controlled Instrumentation Systems"
Euromicro Journal, 6 (1980), pp 343-345.

24. Intel ISIS-1i Operating System Manual, 9800306D

25. Intel Applications note on Hex format.

26. Intel 8080 Microcomputer Systems User's Manual, 9800153
Intel 8085 Microcomputer Systems User's Manual, 9800366

27. "IEEE 896, A proposed Standard Backplane Bus Specification for Advanced
Microcomputer Systems"
Draft 4.1, Revised January 1st, 1982.

28. LEBLING, P.D. et al

"ZORK: a Computerised Fantasy Simulation Game"
IEEE Computer, April 1979, pp 51-59.

29. H.S. FIELD-RICHARDS,
"The DISCUS Hardware Description and Appendices"
RSRE Memo No. 3483

30. Intel MULTIBUS Interfacing, AP 49

(BEF.2)

GLOSSARY OF TERMS AND SYMBOLS USED IN DISCUS

Note: The following terms are presented, not as points for discussion, but as
precise definitions on how they will be used throughout this report.

FUNCTION

A function is a closed piece of code the execution of which would carry
out a particular job in the system. A "closed" piece of code means that
there is no path through the function which involves a transfer of
control to code outside of the function except to the supervisor.

PROCESS

A process is the execution of a function for a given set of parameters.

TRANSACTION

A transaction is a set of transient data which causes a process on a
given function to run.

CPU

A cpu is the device that interprets and performs given machine code
instructions. A microprocessor can be a cpu.

PROCESSOR

A processor consists of a cpu and memory, and the means to connect them
to run programs.

COMPUTER

A computer is a complete usable installation that implies processor(s),
and peripherals, such as VDU and disks.

(3E3.3)

GLOSSARY (continued)

AAR - Auxilliary Address Register
ADRx - Main address bus
CARD - One double Eurocard
CPU - Central Processor Unit (see definition above)
CRATE - One 19 inch wide assembly of CARDS
DATx - Main data bus
DISCUS - Distributed Control Microprocessor System
GLOBAL CRATE - The global store CRATE
GRNTS - Grant Store
LOCAL CRATE - A set of local processors in a CRATE
PROM - Programmable ROM
RACK - A vertical assembly of CRATES
RAM - Random Access Memory*
REQS - Request Store
ROM - Read Only Memory
STGR - Grant store
STRQ - Request store
VDU - Visual display unit

IMPORTANT NOTES

1. Where a signal name is followed by an 'I', it signifies that this
signal is negative true, i.e. for TTL logic the Ov is a logical one
and +5v is a logical zero.

2. The "k" and "M" prefixes to the terms bytes, bits etc, refer to the
binary equivalent NOT the decimal multipliers, for instance
1k bytes=1024 bytes not 1000 bytes.

Random Access Memory in this case means read/write memory. In
the true sense of the word ALL the store in DISCUS is random
access, since it can all be accessed with equal ease.

(REP.4)

ACKNOWLEODGETS

Firstly I would like to thank Howard Nichols whose efforts got DISCUS
started and was the source of the basic software architecture. Howard
wrote the operating system and the initial system generators for DISCUS.
He provided much discussion on the hardware architecture of DISCUS.

When Howard left Mike Grifriths took over the work and produced the
DISCUS report on the operating system. Also the work on recovery was
done by him, and I would like to thank him for all his advice and proof
reading, especially his patience when I was dense and/or bothersome.

DISCUS has been a co-operative venture so a sincere thank you to all
those concerned who have used or been involved with DISCUS. These are
Ian Outram, Terry Connelly, Steve Bracking, and Chris Turner.

I would like to thank Jeannie Kilby, Deirdre Lindup and Lesley Kinder
for doing the initial typing on the word-processor for me.

Finally a blanket thank you to all who answered queries and proffered
advice, wanted or unwanted.

NOTES ON THIS REPORT

This report was originally submitted as a Ph.D. disertation with Imperial
College and represents only a small part of the total report on the DISCUS
multiprocessor. There are two more reports/memos concerned with DISCUS which
describe it in more detail. These are "The DISCUS Hardware Description and
Appendices" [29) and "The DISCUS Operating System" [8]. Reference is made to
them throughout this document. It is impossible to read this report without
refering to them.

(REF.5)

